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Abstract 

The “North American Specification for the Design of Cold Formed Steel Structural Members” 
(2001a) (herein referred to as NAS), established in 2001, governs the design of cold formed steel 
structural members in North America. Given in the specification are equations to predict the various 
failure modes of cold formed steel members in compression, tension, shear, and bending. The concern 
of this study was the failure mode called web crippling, which is the deformation of the web elements 
under concentrated compression loads. 

It is difficult (if not impossible) to develop an analytical design method for web crippling of cold 
formed steel members because of the large deformations, plasticity, variety of section geometries, and 
loading patterns involved with this failure mode. To simplify the design process, an empirical 
equation for predicting web crippling capacity is presented in the NAS. The NAS contains tables of 
coefficients to be used in conjunction with the design equation that account for the different section 
geometries, load cases, and support conditions 

Investigated in this study was the web crippling capacity of multi-web deck sections subjected to 
End One-Flange loading. There was limited data available in the published literature to support the 
current coefficients for multi-web decks under End One-Flange loading. Consequently, this study was 
initiated to derive values that are more accurate. A total of 148 tests were carried out on a range of 
deck profiles, bearing widths, and fastening conditions. In addition, test data from previous web 
crippling studies of multi-web deck sections were also considered. It was found that not all specimens 
from previous studies were tested in a fashion that produced acceptable results. New resistance 
factors and factors of safety were also developed. New coefficients were established using the data 
from this study and any appropriate data from previous work.  

Also investigated in this study was the web crippling capacity of partially-fastened deck sections 
and re-entrant deck sections under the same loading conditions. Partially-fastened decks sections are 
sections that are fastened to supports in a manner that does not meet industry standards. Re-entrant 
deck sections are multi-web deck sections with a web inclination greater than 90º. 77 partially-
fastened multi-web decks and 36 re-entrant decks were tested in this study. It was found that partially-
fastened deck sections, unfastened re-entrant deck sections, and fastened re-entrant deck sections all 
behave similarly to fully-fastened multi-web deck sections and can use the same coefficients, 
resistance factors, and factors of safety for design purposes. 

The ranges of the test specimen parameters were: 299 MPa (43.4 ksi) < Fy < 674 MPa (97.8 ksi); 
1.41 < R/t < 19.9; 20.0 < N/t < 110; 20.8 < h/t < 211; and 71º< θ < 108º. These parameters are defined 
in Section 2.10 (page 15). 
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Chapter 1 
Introduction 

1.1 General 

Presented in this chapter are; a brief description of cold formed steel as a construction material, a 
review of the current design theory regarding web crippling of cold formed steel members, the 
objectives, and the scope of this study. 

1.2 Cold Formed Steel 

Cold formed steel refers to structural members formed from thin sheets of steel at room temperature 
without annealing. Cold formed steel is a widely used construction material for fabricating structural 
members such as joists, girts and purlins, and for fabricating cladding elements such as roof deck. 
Presented in the “North American Specification for the Design of Cold Formed Steel Structural 
Members” (NAS, 2001a) are design rules for cold formed steel members. 

Cold formed steel has many advantages over other building materials. It has a high strength-to-
weight ratio, which reduces the material weight of the structure. Cold formed steel is a  versatile 
material; one can form almost any section geometry imaginable using cold formed steel. Shown in 
Figure 1.2-1 are some common section geometries. Shown in Figure 1.2-2 is an example of cold 
formed steel roof decking used in construction. 

 

Figure 1.2-1: Common Cold Formed Steel Section Geometries 

 

Figure 1.2-2: Cold Formed Steel Roof Decking 
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1.3 Web Crippling 

The NAS (2001a) defines web crippling as a local failure in the web (shear resisting) element(s) of a 
section due to a concentrated load. Common to sections with unreinforced webs, web crippling is 
identified by large out-of-plane deformations near the point of loading. Web crippling is a complex 
problem for theoretical analysis because it is highly dependent on the load positioning, the section 
geometry, support conditions, and other member cross-section parameters. A photograph of a multi-
web deck section undergoing web crippling is shown in Figure 1.3-1 

 

Figure 1.3-1: Typical Web Crippling Failure for Multi-Web Deck Sections 

1.3.1 Load Cases 

The location of the load along the length of a cold formed steel member significantly affects its web 
crippling capacity. Because of this, it is important to know how and where a concentrated load is 
applied to a member. Addressed in the NAS are four distinct load cases, which classify any 
combination of concentrated loads can be classified by these four load cases. 

The four load cases are: Interior One-Flange (IOF), End One-Flange (EOF), End Two-Flange 
(ETF), Interior Two-Flange (ITF). The IOF case is characterized by a concentrated load applied to 
one flange, either top or bottom, located anywhere within the span of the member. In a similar 
fashion, a concentrated load applied to one flange, but located at the end of the member, characterizes 
the EOF case. These four load cases are illustrated in Figure 1.3-2. 

One-Flange loading refers to a concentrated load being applied to just one flange. Two-Flange 
loading refers to concentrated loads being applied to both the top and bottom flanges simultaneously. 
When two loads are applied in opposite directions to opposite flanges, and are applied within 1.5 
times the height of the member from each other, then two-flange loading occurs. If the loads are 
separated by a distance greater than 1.5 times the height (measured from the inside edges of bearing 
plates), then two separate one-flange loadings are said to occur. Similar to IOF and EOF cases, the 
ITF and ETF cases refer to a Two-Flange loading located somewhere within the span and a Two-
Flange loading located at the end of the span, respectively. 
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 >1.5hh >1.5h h 

Interior One - Flange (IOF)

Interior Two-Flange (ITF) End Two - Flange (ETF)

End One-Flange (EOF) 

 

Figure 1.3-2: Web Crippling Load Cases 

1.3.2 Section Geometry and Web Crippling Coefficients 

The nature of cold formed steel allows a large variety of section geometries that can be fabricated 
with relative ease and economy. 

The Finite Element Method and the Finite Strip Method are two methods of analysis that are 
capable of dealing with such a large variety of different geometric sections. Unfortunately, both 
methods require many calculations and are better suited to computer applications than hand 
calculations. 

The NAS (2001a) offers a simplified method involving a single equation using regression 
coefficients determined on the basis of section geometry, load case, and fastening condition. This 
simplification makes the analysis manageable, but at the expense of limiting the web crippling 
equation to sections with known coefficients. 

The NAS contains web crippling coefficients for five section geometries: built-up sections  
(I-sections made from back-to-back channel sections), single web channel sections, single web Z-
sections, hat sections, and multi-web deck sections. The coefficients are given in Tables C3.4.1-1 to 
C3.4.1-5 of the NAS (2001a).  
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1.3.3 Support Conditions 

It has been recognized that support conditions have an influence on the web crippling capacity. Web 
crippling causes deformation in the web elements of the section. As the web element(s) deform, 
deformation also occurs in the flange elements (see Figure 1.3-3). If the flanges are restrained against 
deformation, this restraint will also provide some resistance against web deformation. This allows the 
section to resist higher loads before web crippling can occur.  

 

Figure 1.3-3: Web Buckling and Flange Rotation 

The NAS lists coefficients for both fastened and unfastened support conditions. In this study, a 
fastened support condition has been defined as flanges being bolted to the bearing surface, with a bolt 
spacing not greater than 450 mm (18 in.). An unfastened support condition occurs when the flanges 
are not bolted to the bearing surface. The partially-fastened condition, were the flanges are bolted to 
the bearing surface, but at a spacing greater than 450 mm, is usually overlooked. Deck sections 
subjected to partially-fastened conditions are considered unfastened. This is in agreement with 
recommended practices by the Canadian Sheet Steel Building Institute (CSSBI) and the Steel Deck 
Institute (SDI). 

1.3.4 Cross Section Parameters 

Important cross section parameters for web crippling include the inside bend radius (R), the section 
height, (h), the web thickness, and the web inclination, (θ). These parameters are shown graphically 
in Figure 1.3-4. While not a cross section parameter, the bearing length, (N), and the yield strength, 
(Fy), of the steel are also important. 
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Figure 1.3-4: Cross Section Parameters 

1.4 Objectives of Study 

The web crippling coefficients, C, CR, CN, and Ch, listed in the NAS (2001a) were determined by 
Beshara (1999). In his study, Beshara used existing data from previous work to determine the 
coefficients; however, he did not find many tests that considered fastened multi-web specimens 
subjected to End One-Flange loading. He was obliged to combine the data for fastened and 
unfastened conditions and determine one set of coefficients for both conditions. For this reason, the 
coefficients for multi-web sections under EOF loading must be reinvestigated. 

The primary objective of this study was to determine by experimental means the proper web 
crippling coefficients for multi-web deck sections subject to EOF loading. To accomplish this, tests 
on both fastened and unfastened conditions were carried out. 

There is some debate over the need to consider support conditions when analyzing web crippling. 
Only recently has it been accepted that fastening to the support increases the web crippling capacity 
sufficiently to justify having coefficients for both fastened and unfastened cases. Another objective of 
this study was to demonstrate the significance that fastening to the bearing surface has on the web 
crippling capacity of a multi-web section. This was investigated by testing the specimens under 
unfastened, partially-fastened, and fully-fastened support conditions. None of the partially-fastened 
data was used in determining the web crippling coefficients. 

As a final objective, re-entrant deck sections were tested and their web crippling capacity compared 
to common multi-web deck sections. The coefficients for multi-web deck sections are intended for 
sections with web inclinations between 45º and 90º. Re-entrant deck sections have web inclinations 
greater than 90º. Shown in Figure 1.4-1 are examples of an open multi-web deck section and a re-
entrant (closed) deck section. None of the data from testing the re-entrant deck sections were used in 
determining the web crippling coefficients.  
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Common Deck:

Re-entrant Deck:
 

Figure 1.4-1: Examples of Multi-Web Deck Sections 

1.5 Scope of Study 

The scope of this study was primarily experimental in addition to carrying out computations to 
establish the web crippling coefficients. Testing was limited to common multi-web deck sections 
subject to End One-Flange (EOF) loading. Some less common deck sections, such as deep sections 
(more than 100 mm or 4 inches deep) and sections with high yield stresses (greater than 350 MPa or 
50 ksi), were tested in an effort to ensure that the full range of specimens available were represented 
when determining the web crippling coefficients. Some re-entrant (closed) deck specimens were 
tested, but not used in the determination of the web crippling coefficients. 

Any test specimen that showed signs of Interior One-Flange web crippling or bending failure was 
removed from the data to ensure that only End One-Flange web crippling failures were considered in 
the analysis. Deck sections that were thought to be susceptible to bending failure were reinforced at 
midspan to prevent such a failure. 

In determining the new web crippling coefficients, data from sources other than this study were 
considered, but were often ignored. This was necessary because many of the tests from previous 
studies employed a form of strapping to prevent the deck section from spreading. In many cases, this 
strapping interfered with the flange deformation and influenced the failure mode. 

1.6 Organization of Thesis 

This thesis has been organized into five chapters and six appendices. The first chapter is used to 
introduce the topic of web crippling in cold formed steel design, to explain the objectives of the study, 
and the process of investigation. 

Past work in the field of study is reviewed the second chapter. An effort was made to emphasize 
work specific to web crippling of multi-web deck sections, although past work in web crippling and 
other topics of cold formed steel are also discussed. 
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Presented in Chapter 3 is a description of the experimental investigation. Specimen selection and 
fastening patterns are discussed as well as the test set-up, the determination of mechanical properties, 
the interpretation of load-stroke curves, and the calculation of load at failure. 

Discussed in Chapter 4 are the various methods of analysis used in this study to determine the web 
crippling coefficients. The analysis can be broken into four parts: curve fitting, optimization using 
gradient methods, optimization using genetic algorithms, and data calibration. The optimization 
process was the most difficult, and as such, two different methods were used in the study to lend 
credibility to the results. 

Presented in Chapter 5 are the results of the analysis. There are three main parts to this chapter: the 
determination of web crippling coefficients, an investigation of the partially-fastened support 
condition, and an investigation of re-entrant deck sections. At the end of the chapter, discussion and 
recommendations for future study are given. 

This document contains six appendices. Listed in the first appendix are all of the mechanical 
properties for the test specimens. Contained in the second appendix are geometric properties of the 
specimens, including specimen data from selected past studies. Listed in the third appendix are load 
data and test variables, such as span lengths and reaction loads. Contained in the fourth appendix are 
comparisons of theoretical and actual web crippling capacities, using both the coefficients currently 
listed in the NAS (2001a) and the new coefficients produced by this study. Data from this study and 
from selected previous studies are also listed in this appendix. Presented in the fifth appendix are all 
of the load-stroke curves produced during testing. Finally, given in the sixth appendix is a discussion 
of the implementation of the genetic algorithm used in this study, including source code. 
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Chapter 2 
Literature Review 

2.1 General 

Much research was carried out in the past 60 years with the goal of establishing an accurate method 
of predicting web crippling failures. Presented in this chapter are some of the studies and a brief 
description of how this work advanced the understanding of web crippling. 

2.2 Winter and Pian (1946) 

Winter and Pian (1946) at Cornell University conducted a series of experimental studies investigating 
web crippling in cold formed steel sections. The investigators were among the first to identify the four 
load cases defined in Section 1.3.1. They conducted 136 tests on I-sections built by combining  
C-sections. Later, Winter performed tests on single web sections, including 128 tests on hat sections 
and 26 tests on U-sections (Cornell, 1952 and Cornell, 1953). 

Location of
fastener

 

Figure 2.2-1: Examples of Sections Tested by Winter and Pian 

Based on their tests, Winter and Pian found that the web crippling strength of unreinforced webs 
depend primarily on the yield strength of the steel and on the ratios: N/t, h/t, and R/t (defined on the 
next page). Current web crippling equations still incorporate these ratios. 

From their work, Winter and Pian recommended the following equations for design; 

a) I-sections subject to End One-Flange loading 






 += t

NtFP yult 25.1102  (2.2-1) 

b) I-sections subject to Interior One-Flange loading 






 += t

NtFP yult 25.3152  (2.2-2) 
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c) Hat sections and C-sections subject to End One-Flange loading 

( )t
h

t
h

t
N

t
NFFt

P yy
ult 60212355450

33
330331

1000

2

.... −−+







−=  (2.2-3) 

Where Pult is multiplied by the term (1.15 - 0.015R/t) when 1 < R/t ≤ 4. 

d) Hat sections and C-sections subject to Interior One-Flange loading 

( )t
h

t
h

t
N

t
NFFt

P yy
ult 305.012517000

33
22.022.1

1000

2

−−+







−=  (2.2-4) 

Where Pult is multiplied by the term (1.06 - 0.06R/t) when 1 < R/t ≤ 4. 

Where: 

Pult = Ultimate web crippling strength (resistance) per web 
Fy = Yield strength (ksi) 
h = Clear distance between flanges measured in the plane of the web (in.) 
N = Bearing length (in.) 
t = Web thickness (in.) 
R = Inside bend radius (in.) 

It is important to note that Equations 2.2-1 to 2.2-4 are limited to U.S. Customary units. The range 
of parameters in these tests was: 30 < h/t < 175, 7 < N/t < 77, and 30 ksi < Fy < 39 ksi. 

2.3 Baehre (1975) 

Baehre (1975) completed a study of multi-web sections subjected to Interior One-Flange loading. His 
test specimens were hat sections with web inclinations ranging from 50º to 90º. Based on his tests, 
Baehre recommended that Equation 2.3-1 be used to predict the web crippling capacity of hat sections 
subjected to Interior One-Flange loading. For End One-Flange loading, Baehre recommended that 
only 50% of the load predicted by Equation 2.3-1 be used, although no tests were carried out to 
confirm this. 

 ( ) ( )( )22

904.201.011.018.08.28.1 θ++




 −−= t

N
t

RktFP yult  (2.3-1) 

Where: 

Pult = Ultimate web crippling strength (resistance) per web 
Fy = Yield strength (ksi) 
h = Clear distance between flanges measured in the plane of the web (in.) 
k = Fy/49.3 
N = Bearing length (in.) 
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t = Web thickness (in.) 
R = Inside bend radius (in.) 
θ = Web inclination, measured as the angle between the web and the bearing surface 

Equation 2.3-1 is limited to U.S. Customary units and the following parameters: h/t ≤ 170, R/t ≤ 10, 
and 50º ≤ θ ≤ 90º. 

2.4 Hetrakul and Yu (1978) 

Hetrakul and Yu (1978) at the University of Missourri-Rolla completed a study of cold formed steel 
sections having single unreinforced webs. They tested 140 specimens, most of which were not 
fastened to the end supports. From this data, and from previously existing data involving hat sections 
(Cornell, 1952 and Cornell, 1953), they derived design expressions for single web sections for all four 
load cases (see Section 1.3.1). Because hat sections were involved, these equations were to be used 
for the design of multi-web deck sections. The expressions are as follows: 

a) For Interior One-Flange loading (both stiffened and unstiffened flanges) 

( )( )t
N

t
hCC

tF
P y

ult 0069.0152.2216317
1000 21

2

+−=  (2.4-1) 

If N/t > 60 then the term (1+0.0069N/t) may be replaced with (0.748+0.0111N/t) 

b) For End One-Flange loading with stiffened flanges 

( )( )t
N

t
hCC

tF
P y

ult 0102.0124.1810018
1000 43

2

+−=  (2.4-2) 

If N/t > 60 then the term (1+0.0102N/t) may be replaced with (0.922+0.0115N/t) 
For End One-Flange loading with unstiffened flanges 

( )( )t
N

t
hCC

tF
P y

ult 0099.0151.86570
1000 43

2

+−=  (2.4-3) 

If N/t > 60 then the term (1+0.0099N/t) may be replaced with (0.706+0.0148N/t) 

c) For Interior Two-Flange loading (both stiffened and unstiffened flanges) 

( )( )t
N

t
hCC

tF
P y

ult 0013.0164.6823356
1000 21

2

+−=  (2.4-4) 

d) For End Two-Flange loading (both stiffened and unstiffened flanges) 

( )( )t
N

t
hCC

tF
P y

ult 0099.0128.177411
1000 43

2

+−=  (2.4-5) 

Where: 

Pult = Ultimate web crippling strength (resistance) per web 
C1 = (1.22 - 0.22 Fy /33) 
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C2 = (1.06 - 0.06 R /t) 
C3 = (1.33 – 0.33 Fy /33) 
C4 = (1.15 – 0.15 R /t) 
Fy = Yield strength (ksi) 
h = Clear distance between flanges measured in the plane of the web (in.) 
N = Bearing length (in.) 
t = Web thickness (in.) 
R = Inside bend radius (in.) 

Equations 2.4-1 to 2.4-5 are limited to U.S. Customary units and to the following test parameters: 
45 ≤ h/t ≤ 258, 11 ≤ N/t ≤ 140, 1 ≤ R/t ≤ 3, 33 ≤ Fy ≤ 54 ksi, and a web inclination, θ, of 90º. 

In their study, Hetrakul and Yu (1975) distinguished between stiffened and unstiffened flanges. 
The difference is shown graphically in Figure 2.4-1, where the member with the stiffened flange in on 
the left, and the member with the unstiffened flange is on the right. 

Lip Stiffener

 

Figure 2.4-1: C-sections with Stiffened Flanges (left) and Unstiffened Flanges (right) 

Hetrakul and Yu also derived design expressions for I-sections using existing data. These equations 
have not been reproduced in this document since the focus is on multi-web deck sections. Using their 
design expressions, Hetrakul and Yu also investigated the interaction of bending and web crippling on 
cold formed steel beam members. 

2.5 Wing (1981) 

Wing (1981) at the University of Waterloo completed an experimental study of web crippling and the 
interaction of bending and web crippling of multi-web deck sections. Using his own experimental 
data, Wing developed web crippling equations for multi-web sections under Interior One-Flange 
(IOF) loading, Interior Two-Flange (ITF) loading and End Two-Flange (ETF) loading. Wing did not 
test EOF load conditions. In addition, all of Wing’s specimens were fastened to the reaction supports 
during testing. The equations Wing proposed to predict web crippling failure are as follows: 
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a) For Interior One-Flange (IOF) loading 

( ) 





 +






 −










−−=

t
N

t
h

t
RkFtP yn 00526.01000985.01074.01107.01sin6.16 2 θ  (2.5-1) 

b) For Interior Two-Flange (ITF) loading 

( ) 

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RkFtP yn 00948.0100139.010306.0122.01sin18 2 θ  (2.5-2) 

c) For End Two flange (ETF) loading 

( ) 





 +






 −










−−=

t
N

t
h

t
RkFtP yn 00887.0100206.01111.010777.01sin9.10 2 θ  (2.5-3) 

Where: 

Pn  =  Nominal web crippling strength (resistance) 
Fy = Yield strength (ksi) 
h  =  Flat dimension of web measured in plane of web (in.) 
N  =  Bearing length (in.) 
R  =  Inside bend radius (in.) 
t  =  Web thickness (in.) 
θ  =  Angle between plane of web and plane of bearing surface, 45° < θ ≤ 90° 
k = Fy/33 

Equations 2.5-1, 2.5-2, and 2.5-3 are limited to U.S. Customary units and to the following 
parameters: h/t ≤ 200, N/t ≤ 210, and R/t ≤ 3. 

Later, Wing and Schuster (1982) performed a more detailed investigation into the web crippling of 
multi-web deck sections subjected to Two-Flange loading. 

2.6 Yu (1981) 

At the University of Missouri-Rolla, Yu (1981) completed an extensive study of multi-web deck 
sections subjected to End One-Flange and Interior One-Flange loading. His goal was to establish 
experimentally a set of data with which to validate the design equations in the 1980 edition of the 
AISI Specification (AISI, 1980). He also investigated the interaction of bending and web crippling of 
multi-web deck sections. Many of Yu’s test specimens were composite deck sections, which have 
perforations and/or embossments in the web element designed to strengthen the bond between the 
steel deck and a concrete topping. Due to the potential influence of the embossments on the webs, 
composite deck sections cannot be included with common multi-web deck sections when establishing 
design equations. 
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None of Yu’s specimens were fastened to the supports. To prevent spreading, Yu affixed a 1/8” x 
3/4” metal strap to the underside of the deck, at a distance of 1.5 times the section depth from the 
bearing plates. This is different from how multi-web deck sections are used in practice, where the 
deck sections are attached using discreet fasteners (such as puddle welds) at the point of bearing only. 
The metal strap restricted the rotation of the outside flanges, which increased the web crippling 
capacity of the deck section.  

It was attempted to incorporate the data from Yu’s study in the current study. However, the data 
was found to be different, no doubt due to the metal strapping. For this reason, none of the data from 
Yu’s study was used in the current study. 

2.7 Studnička (1989) 

Studnička (1989) at the Czech Technical University completed an experimental study to determine 
the web crippling load resistance of multi-web deck sections subjected to end and interior reaction 
loads. Studnička proposed using the following equation, modeled from the equations in the 1984 
edition of the Canadian standard (CAN/CSA-S136, 1984), for predicting the web crippling capacity 
of both End One-Flange and End Two-Flange loading; 

 ( ) ( )( )( )t
N

h
k

t
h

t
RFtP yn 00501151500110110110 2 ...sin ++−





 −−= κθ  (2.7-1) 

Where: 

Pn  =  Nominal web crippling strength (resistance) 
Fy = Yield strength (MPa) 
h  =  Clear distance between the flats of flanges measured in the plane of the web (mm) 
k = Distance between end of deck and end of bearing plate (mm) 
N  =  Bearing length (mm) 
R  =  Inside bend radius (mm) 
t  =  Web thickness (mm) 
θ  =  Angle between plane of web and plane of bearing surface, 45° < θ ≤ 90° 
κ = Fy/230 

Studnička indicated that Equation 2.7-1 is limited S.I. units and to sections with ratios of h/t ≤ 200, 
N/t ≤ 210, R/t ≤ 3, and k ≤ 3h. 

The data produced by Studnička was not used in this study because he fixed a bar to the end of his 
specimens to simulate the effect of fasteners. This bar and the small length of specimen to which it 
was attached extended beyond the bearing supports. This violates the definition of EOF loading 
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which requires the edge of the specimen to be in contact with the bearing plate. Studnička’s data 
should be classified as IOF loading, by definition. 

2.8 Bakker (1992) 

Bakker (1992) at Eindhoven University of Technology in the Netherlands used yield line theory to 
create a numerical model to simulate web crippling of a cold formed steel hat section. Her goal was to 
demonstrate that the statistical deviation between experimental data and theoretical load capacity 
could be reduced by using a numerical model instead of design equations derived from experimental 
tests. Her reasoning was that design equations would always be limited to the range of parameters of 
the test specimens. Yield line theory is a numerical method similar to finite element analysis, but with 
many simplifications that greatly reduce the amount of computational effort required to find a 
solution. Due to recent advances in computer technology, finite element analysis is now the preferred 
numerical method for such modelling. 

A web crippling failure occurs by one of two mechanisms: the yield arc mechanism or the rolling 
mechanism. Bakker was not the first to distinguish between these two mechanisms, however she was 
one of the first to recognize the importance these mechanisms play in web crippling. Bakker found 
that she could not use existing test data to verify her model because few researchers record the failure 
mechanism. This obligated her to create her own experimental database. 

The yield arc mechanism and the rolling mechanism are both discussed in more detail in Section 
3.4.1. The mechanisms play a small role in interpreting the failure load from load-deflection curves. 
Bakker observed that the failure mechanism is significantly influenced by the inside bend radius, and 
that the rolling mechanism is more common to sections with large radii. 

The model Bakker developed is that of a simple hat section deforming due to the rolling 
mechanism while subjected Interior One-Flange loading. Her model was a better predictor of web 
crippling capacity than the current design equations of the time, however the computational effort 
required to determine the web crippling capacity rendered this method impractical for design needs. 

2.9 Bhakta et al. (1992) 

Bhakta, LaBoube, and Yu (1992) at the University of Missouri-Rolla experimentally investigated the 
influence of flange restraint on the web crippling capacity of beam web elements. Bhakta tested many 
different section profiles, including multi-web deck sections. One of the conclusions of the study was 
that deck sections subject to EOF loading experience an increase of 37% in web crippling capacity 
when the flanges are fastened to the support. 
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Bhakta’s data involving End One-Flange loading of multi-web deck sections have been included in 
this study. 

2.10 Prabakaran (1993) 

Prabakaran (Prabakaran, 1993 and Prabakaran and Schuster, 1998) at the University of Waterloo 
completed an extensive statistical study of the web crippling capacity of cold formed steel sections 
using experimental data found in the literature. The primary goal of his study was to develop a 
simplified non-dimensional equation for predicting the web crippling capacity of any cold formed 
steel section. From the results of his study, Prabakaran recommended Equation 2.10-1, which was 
adopted for use by the Canadian Standard for Cold Formed Steel Structural Members (CAN/CSA-
S136, 1994b) and by the NAS (2001a). Prabakaran was the first to correct a number of problems 
found in previous web crippling equations, including a problem where using high-strength steels 
incorrectly resulted in a decrease in web crippling capacity. 

 




 −





 +





 −= t

hCt
NCt

RCFCtP hNRyn 111sin2 θ  (2.10-1) 

Where: 

Pn  =  Nominal web crippling strength 
Fy = Yield strength 
C  =  Coefficient 
Ch  =  Web slenderness coefficient 
CN =  Bearing length coefficient 
CR  =  Inside bend radius coefficient 
h  =  Flat dimension of web measured in plane of web 
N  =  Bearing length 
R  =  Inside bend radius 
t  =  Web thickness 
θ  =  Angle between plane of web and plane of bearing surface, 45° < θ ≤ 90° 

2.11 Gerges (1997) 

Gerges (Gerges, 1997 and Gerges and Schuster, 1998) at the University of Waterloo completed a 
study of single web members subjected to End One-Flange loading. Particular attention was placed on 
specimens with inside bend radius to thickness ratios between 5 and 10. In his study, Gerges tested 72 
C-sections where 5 < R/t < 10. This data was combined with previous data and new web crippling 
coefficients were derived for this geometry and loading case. 
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2.12 Wu et al. (1997) 

Wu, Yu, and LaBoube (1997) at the University of Missouri-Rolla, completed a study investigating the 
web crippling capacity of high strength cold formed steel sections. The yield strength of the 
specimens ranged from 716 MPa (103.9 ksi) to 776 MPa (112.5 ksi). The tests were limited to hat 
sections and multi-web deck sections, which were tested for all four load cases. None of the test 
specimens were fastened to the supports during testing. 

From the results of their testing, Wu proposed modified kC1 and kC3 factors for use in Equations 
2.4-1 to 2.4-5. The terms C1 and C3 are defined in Section 2.4 of this document. The variable, k, is 
equal to Fy/33, where Fy is in units of ksi. He concluded that the value of 1.691 could be used for kC1 
when Fy exceeds 630 MPa (91.5 ksi) and the value of 1.34 could be used for kC3 when Fy exceeds 
460 MPa (66.5 ksi).  

When testing the End One-Flange load case, Wu clamped the bottom flanges of the specimen to a 
steel plate. However, these clamps were placed at the midspan of the specimen and do not appear to 
have restricted the rotation of the flanges at the location of failure, as can be seen in Figure 2.12-1, 
which was taken from Wu’s research report. Wu’s data was included in this study. 

 

Figure 2.12-1: Clamps at Midspan of Wu Specimen  

2.13 Beshara (1999) 

Beshara (Beshare, 1999 and Beshara and Schuster, 2000) at the University of Waterloo completed a 
study with the goal to produce better web crippling coefficients for use with Equation 2.10-1 
proposed by Prabakaran (1993). Combining experimental data found in the literature with his own 
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test data, Beshara classified the data by section type (e.g. C-section, Z-section, multi-web, etc), by 
load configuration (e.g. End One-Flange, Interior One-Flange, etc), and by support conditions 
(fastened or unfastened). The web crippling coefficients recommended by Beshara were adopted for 
use in the NAS (2001a). 

Beshara also recommended that future research into multi-web sections subjected to EOF loading 
be conducted due to the relatively few test specimens he was able to find in the literature. This was 
especially true of multi-web deck sections with fastened support conditions. 

2.14 Avci and Easterling (2002) 

Avci and Easterling (2002) at Virginia Polytechnic Institute and State University completed an 
experimental study of multi-web deck sections subjected to EOF loading. The goal of the study was 
to investigate the relative accuracy of the web crippling equation presenting in the NAS (2001a) 
compared to the previous web crippling equation used in the American Iron and Steel Institute’s 1996 
Edition of the Specification for Cold Formed Steel (AISI, 1996a). Avci and Easterling tested both 
fastened and unfastened conditions, and they allowed certain geometric parameters to exceed the 
restrictions imposed by the NAS. 

To control their specimens from spreading under the test loads, Avci and Easterling fixed metal 
strapping to the underside of their specimens, located a short distance from the bearing plate. They 
reported that the strapping was used to better simulate the behaviour of steel decks in the field. In 
practice, deck sections are attached using discreet fastening (such as puddle welds) at the point of 
bearing. Metal strapping is not normally used when testing multi-web sections because the additional 
fastening could result in uncharacteristic behaviour of the specimen. During testing, the metal 
strapping restricted the rotation of the outside flanges, which increased the web crippling capacity of 
the section. Based on this, Avci found both the 1996 AISI Specification and the NAS (2001a) 
methods to be conservative.  

It was attempted to incorporate the data from Avci and Easterling’s study in the current study. 
However, the data was found to be different, no doubt due to the metal strapping. For this reason, the 
data produced by Avci and Easterling was not included in the current study. 
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Chapter 3 
Experimental Investigation 

3.1 General 

The experimental component of this study is discussed in detail in this chapter. More specifically, 
specimen selection is explained, followed by mechanical properties, specimen notation, test 
procedure, and interpretation of test results.  

3.2 Test Specimens 

The test specimens used in this study were selected in an effort to represent a wide range of multi-
web deck sections currently available in North American. Within the eleven deck profiles used, a 
range of section depths, yield strengths, web inclinations, and number of webs per specimen are 
represented. In addition, Canadian and American manufacturers are equally represented.  

3.2.1 Specimen Selection 

An attempt was made to represent the full range of geometric parameters of deck sections available 
from three Canadian and three American fabricators. Each selected profile was tested in three 
different thicknesses: 22 gauge (0.76 mm, 0.030 in.), 20 gauge (0.91 mm, 0.036 in.), and 18 gauge 
(1.21 mm, 0.048). The exception to this was United Steel Deck decks H6 and H7.5, which were tested 
at 20 gauge (0.91 mm, 0.036 in.), 18 gauge (1.21 mm, 0.048), and 16 gauge (1.52 mm, 0.060 in.). 
Listed in Table 3.2-1 are all of the deck profiles used in this study and deck section properties as 
published by the manufacturer. 

To constitute a multi-web deck section, all specimens required a minimum of four webs. In the case 
where the deck section was rolled with only two webs, two deck sections were attached together and 
tested as one unit with four webs. The specimens were crimped at both ends and at midspan of the 
specimen. This resulted in a spacing of approximately 600 mm (24 in.) between points of crimping, 
which meets the spacing requirements of 900 mm (36 in.) recommended by CSSBI and SDI. 
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Table 3.2-1: Deck Profiles used in Study 

Profile Depth, mm (in.) Pitch, mm (in.) Number of Webs
United Steel Deck J4.5* 114 (4.5) 306 (12) 4 
United Steel Deck H6* 152 (6) 306 (12) 4 

United Steel Deck H7.5* 190 (7.5) 306 (12) 4 
Wheeling DeepRib 114 (4.5) 306 (12) 4 

Canam P-3615 38 (1.5) 153 (6) 12 
Canam P-2432 76 (3) 306 (12) 4 

VicWest RD306 76 (3) 153 (6) 8 
VicWest HB30V** 76 (3) 406 (16) 4 

Epic ER2R 50 (2) 154 (6 1/16) 8 
Epic ER3.5 102 (4) 206 (8 1/8) 6 

CMRM S-30-8 76 (3) 203 (8) 6 
* Two deck sections were joined together to create a four-web section. 
** This section normally has web embossments. It was rolled without web embossments for this study. 

3.2.2 Fastening Patterns 

Specimens were tested under a variety of fastening patterns ranging from no fastening, to only being 
fastened at the ends, to being fastened at every flute. A specimen with a pitch less than or equal to 
200 mm (8 in.) was considered to be fully-fastened when every second flute was attached. Specimens 
were fastened to the supports using 11 mm (7/16 in.) bolts with a washer being placed under the bolt 
head only. The bolt head was always under the bearing plate, so that the washers were never in 
contact with the specimens. 

Common practice in industry is to consider the deck section to be fastened when fasteners are 
spaced at intervals not greater than 450 mm (18 in.). When the fastener spacing exceeds 450 mm (18 
in.), the assumed support condition is unfastened. In this study, a partially-fastened support condition 
was defined as a deck section that was fastened, but the fasteners were spaced at intervals greater than 
450 mm. By this definition, it is not possible for a deck section to be partially-fastened if the width of 
the section is less than 450 mm (18 in.). In this study, an investigation of partially-fastened support 
conditions was done to determine if treating this support condition as part of the unfastened support 
condition is the correct approach for design. 

Shown in Figure 3.2-1 are all of the deck profiles of the various specimens used in this study. 
Listed in Table 3.2-2 are the different fastening patterns used in this study. The fastener locations 
listed in Table 3.2-2 are in reference to the lowercase letters shown below the deck profiles in Figure 
3.2-1 and indicate the location of a fastener. 
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Figure 3.2-1: Profiles of Specimens Used in the Study. 

Table 3.2-2: Fastener Combinations for each Section Profile Tested. 

Deck Section Profile Fastener Location 
Combinations 

Number of 
Combinations 

A 
0 

a-c 
a-b-c 

3 

B 
0 

a-d 
a-b-d 

3 

C 
0 

a-e 
a-c-e 

3 

D 

0 
a-g 

a-d-g 
a-c-e-g 

4 

E 
0 

a-e 
a-c-e 

3 

3.2.3 Specimen Notation 

The notation system used herein identifies each specimen and contains information regarding the 
specimen geometry and test parameters. There are two parts to the specimen notation. 

The first part of the notation is the test series name, which is a two-digit identification code (one 
letter followed by a number) that links specimens made from the same coil of steel. Because they 
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were fabricated from the same coil, it was assumed that all specimens within a test series will have 
the same mechanical properties. These properties are listed in Appendix A. Only the size of the 
bearing plate and the fastening pattern were varied between specimens with the same test series name. 

The second part of the notation is the test specimen name, which is divided into four parts: the 
fabricator code, the number of webs, the bearing plate width, and the fastening pattern. The fabricator 
code notation and the fastening pattern notation are listed in Tables 3.2-3 and 3.2-4, respectively. For 
more detail on fastening patterns, refer to Table 3.2-2 and Figure 3.2-1 of the previous section. 

Three different sizes of bearing plate were used in testing. The bearing plates are identified as 1, 2, 
and 3, where 1 is 24 mm (0.94 in.) wide, 2 is 50 mm (1.97 in.) wide, and 3 is 75 mm (2.95 in.) wide.  

Example: 

 C1-CAN30-4-1-NONE 

Where 

C1 = Test series (see Appendix A) 
CAN30 = Fabricator and product (See Table 3.2-3) 
4 = Number of webs 
1 = Bearing plate 
NONE = Fastening pattern (See Table 3.2-4) 

From this example, one can see that C1-CAN30-4-1-NONE is a Canam P-2432 multi-web deck 
with a steel thickness of 1.16 mm (0.046 in.), a yield strength of 340 MPa (49.3 ksi), 4 webs, a 
bearing plate width of 24 mm (approximately 1 in.), and an unfastened support condition. 

Table 3.2-3: Fabricator Code for Specimen Notation  

Fabricator Code Fabricator Product Nominal Depth, mm (in.) 
CAN15 Canam-Manac P-3615 38 (1.5) 
CAN30 Canam-Manac P-2432 76 (3.0) 

CMRM30 Roll Form Group S-30-8 76 (3.0) 
EPIC20 Epic Steel ER2R 46 (1.8) 
EPIC40 Epic Steel ER3.5 89 (3.5) 
USD45 United Steel Deck J4.5 114 (4.5) 
USD60 United Steel Deck H6 152 (6.0) 
USD75 United Steel Deck H7.5 190 (7.5) 
VIC3a VICWEST RD306 76 (3.0) 
VIC3b VICWEST HB30V 76 (3.0) 

WHE45 Wheeling DeepRib 114 (4.5) 



  22 

 

Table 3.2-4: Fastening Pattern Notation 

Pattern Name 4 webs 6 webs 8 webs 12 webs 
NONE 0 0 0 0 
ENDS a-c a-d a-e a-g 
3RDS N.A. N.A. N.A. a-d-g 
2NDS N.A. N.A. N.A. a-c-e-g 
ALL a-b-c a-b-d a-c-e N.A. 

3.2.4 Mechanical Properties 

The assumption was made that all specimens of the same profile, thickness, and manufacturer were 
fabricated from the same coil of steel, and as such would have similar mechanical properties. With 
this in mind, three coupon specimens were cut from the webs of one of the tested deck specimens per 
profile per thickness, chosen at random. These coupons were carefully measured and tested in 
accordance with ASTM A370 (2002) and Section A7.1 of the Commentary on the North American 
Specification for the Design of Cold Formed Steel Structural Members (2001b). The yield strength 
from each of the three coupons were averaged and recorded as the representative value. This yield 
strength was then applied to all other specimens of the same profile, thickness, and manufacturer. A 
complete listing of the mechanical properties of all of the specimens is given in Appendix A. 

Contained in Section A2.3.1 of the NAS (2001a) are requirements for ductility. Specifically, the 
section states that steel used for structural member design have an ultimate-to-yield (Fu/Fy) ratio 
greater than 1.08 and an elongation greater than 10%. Test series W1 and W2 do not meet these 
requirements. However, as the intent of Section A2.3.1 is to make the specification more conservative 
when dealing with high strength steels and as there were no adverse effects from incorporating the 
data from these two test series in the analysis portion of this study, it was deemed acceptable to 
include this data. 

3.3 Test Set-Up 

All specimens were tested under a simply supported condition, subjected to a single line loading with 
the location of the applied load and the supports chosen to ensure failure at the end supports. To 
minimize the chance of failure due to bending, the span length was kept as short as possible. In some 
cases, it was necessary to reinforce the section to prevent bending at the point of load application. The 
reinforcing was achieved by screw-fastening a piece of the same deck section to the test specimen, 
while ensuring that a distance of 1.5 times the section depth, measured from the inside of the ‘near’ 
bearing plate, was not reinforced. A photograph of a reinforced specimen is shown in Figure 3.3-1.  
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Figure 3.3-1: Specimen Reinforced to Achieve EOF Loading 

For clarity, the ends of the specimen were designated as ‘near’ and ‘far,’ as shown in Figure 3.3-2. 
The ‘near’ end was the end at which failure was desirable. 

The applied load was positioned a small distance away from the centre of the span so as to cause 
one support to have a higher load than the other, causing failure at the ‘near’ end of the specimen. 
Different sized bearing plates were also used for the same reason. At the ‘near’ end, the bearing width 
varied from 24 mm (1 in.) to 75 mm (3 in.), whereas at the ‘far’ end and at the point of loading the 
bearing width was 150 mm (6 in.). A schematic layout of the test set-up is shown in Figure 3.3-2 and 
a photograph of the test set-up is shown in Figure 3.3-3. 

PTest

RTest

Load Span Length

Span Length

NearFar

Fastening
Pattern

Bearing
Length

> 1.5 h

150 mm

 
Figure 3.3-2: Diagram of Test Set-up. 
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Figure 3.3-3: Photograph Showing Test Set-up. 

The minimum span length for each test (listed in Tables C-1 to C-3 of Appendix C) was 267 mm 
(10.5 in.) plus three times the height of the specimen, measured from the center of the near bearing 
plate to the center of the ‘far’ bearing plate. This length was imposed by the size of the bearing plates 
and the required distance of 1.5 times the section depth between bearing plates (needed on both sides 
of the applied loading) for One-Flange loading. In testing, the minimum span length was always 
exceeded, often by 50 mm (2 in.) or more. Exceeding the minimum span length allowed the applied 
load to be positioned a small distance away from center, towards the ‘near’ end of the specimen. 
Positioning the applied load as such caused the reaction load at the ‘near’ support to be larger than the 
reaction at the ‘far’ support, thereby ensuring failure at the ‘near’ end of the specimen. 

At the ‘near’ end, the specimens were tested using one of three different bearing lengths: 24 mm  
(1 in.), 50 mm (2 in.), or 75 mm (3 in.). For some tests, the ‘near’ end of the specimen was fastened to 
the bearing plate using bolts. The ‘near’ bearing plates were slotted to accommodate the variety of 
geometries between the different test specimens. Neither the bearing plate under the load nor the ‘far’ 
bearing plate were slotted. For the few tests where the lack of fasteners at the ‘far’ end of the 
specimen influenced the specimen’s behaviour, clamps were used in place of bolts. 

A hydraulic actuator applied the load at a constant rate of displacement. An electronic load cell 
positioned between the actuator head and the specimen measured the load, which was recorded by a 
computer data acquisition system. The load was applied under constant displacement of the actuator 
head. The computer was able to detect any failure as a sudden drop in load. Deflection of the 
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specimen was not recorded during testing. However, the stroke, or displacement, of the actuator was 
recorded for plotting the load-stroke curves. The load-stroke curves are given in Appendix E. Note 
that the magnitude of the stroke has been intentionally omitted from these curves to eliminate any 
possible confusion between the stroke (which is measured at point of applied loading, near midspan) 
and member deformation at the point of failure. 

For each section geometry and steel thickness, one specimen was tested as per Figure 3.3-2 for 
each bearing plate width and fastening condition, for a total of nine tests per geometry and thickness 
(twelve tests for specimens with ten or more webs). Summarized in Tables C-1 to C-3 of Appendix C 
are the span length and the load span factor for each test specimen. Summarized in Tables B-1 to B-3 
of Appendix B are the cross-section parameters for each test specimen. 

3.4 Interpreting Test Data 

Discussed in the following section is the determination of web crippling capacity of a specimen from 
the experimental data. Discussed first is the interpretation of the data from the load-stroke curves, 
followed by the calculation of the end load from the free body diagram and the applied load of the 
specimen.  

3.4.1 Determining Maximum Applied Load from Load-Stroke Curves 

There exist two different mechanisms under which web crippling can occur. The first is the yield arc 
mechanism, which is characterized by out-of-plane deformation within the web element. The second 
is the rolling mechanism, where the deformation occurs at the radii between the web elements and the 
flange elements. The radii ‘rolls,’ transferring material from the web elements and redistributing it to 
the flange elements. The rolling mechanism is more common in shallow sections and sections with 
large bend radii. Bakker (1992) states that the rolling mechanism occurs in sections with large R/t 
ratios, whereas the yield arc mechanism occurs in sections with small R/t ratios. Unfortunately, she 
does not indicate what constitutes a large R/t ratio. These two mechanisms are illustrated by means of 
diagrams in Figures 3.4-1 and 3.4-2. 
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Figure 3.4-1: Yield Arc Mechanism 
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Figure 3.4-2: Rolling Mechanism 

The yield arc mechanism and the rolling mechanism have different characteristic load-stroke 
curves. Illustrated in Figure 3.4-3 is a typical load-stroke curve for a specimen that has experienced 
the yield arc mechanism. This curve shows an initial increase in load until failure at the first peak. At 
this point, the web has begun to arc and the ability of the specimen to resist load is diminished. As the 
web continues to deform, one half of the web will be pushed downward until it becomes part of the 
flange element. The remaining web element is shorter, and therefore has an increased ability to resist 
load. This causes a second increase in web crippling resistance that is greater than the initial 
resistance. One can assume that the specimen has a higher web crippling capacity in the post-buckled 
state. However, as the specimen is permanently deformed, failure is considered to have occurred at 
the first peak load. Often during testing, the load from the actuator was released once the first peak 
load became obvious and any increased post-buckled web crippling capacity was not recorded. The 
failure load was recorded in this manner for all specimens that failed by the yield arc mechanism. 
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Figure 3.4-3: Typical Load-Stroke Curve of Yield Arc Mechanism 

The identification of a peak failure load is not as simple with the rolling mechanism. Illustrated in 
Figure 3.4-4 is a typical load-stroke curve for a specimen failing due to the rolling mechanism. As can 
be seen from the curve, the rolling mechanism does not have the abrupt loss of load resistance 
characteristic to the yield arc mechanism. It is a subtle failure, where once the failure load is reached, 
deformation occurs gradually. Web crippling is a form of buckling, which is dependent on web depth. 
As the depth of the web element is gradually decreasing in this mechanism, similarly, the load 
resistance will also gradually increase. This makes identification of a failure load less straightforward. 
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Deformed shape
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Figure 3.4-4: Typical Load-Deflection Curve of Rolling Mechanism. 

The failure load of a rolling mechanism was taken as the load at the point of inflection on the load-
stroke curve. The point of inflection, by definition, is any point along a function where the second 
derivative is equal to zero. In this study, for any specimen that failed due to rolling mechanism, the 
data from the test was fitted to a sixth order polynomial. The second derivative of the polynomial was 
determined and solved for zero to determine the failure load. The smallest inflection point within the 
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range of the data was usually taken to be the failure load, although some judgement was used in the 
decision. Also of note is the initial low stiffness of both curves. The low stiffness of the initial loading 
zone is caused by a small amount of camber in the bearing plates, which must first be flattened before 
any significant load can be developed in the webs. It is this straightening that results in a lower initial 
stiffness of the specimen. 

The applied load at failure is referred to as Ptest in this document, which is different from the failure 
load experienced at the ‘near’ end of the specimen, which is defined as Rtest. 

3.4.2 Converting Applied Load to End Load 

Discussed in the previous section was how the applied load at failure was determined from the load-
stroke curve. However, this curve is the load and stroke near the midspan of the deck section, where 
the load was applied from the test frame. Failure occurs at the ‘near’ end of the span and an 
equivalent end load must be determined. 

During testing, the span length and the distance between the near end of the span and the point of 
loading were recorded. Equation 5.2-1 determines the critical end load, Rtest. 

 ( )α−⋅= 1testtest PR  (3.4-1) 

In Equation 3.4-1, Ptest is the recorded applied load at failure of the test and α is the ratio of the 
distance between the applied load and the ‘near’ end support to the span length. The ‘near’ end 
support is the end support at which web crippling occured. The graphical meaning of Rtest, Ptest, and α 
are shown in Figure 3.4-5. 

 Ptest

Rtest 

 α L
 L

 

Figure 3.4-5: Test Specimen Layout 

3.5 Test Results 

The test results can be found in the appendices. More specifically, the load-stroke curves are given in 
Figures E-1 to E-30 of Appendix E and the specimen failure loads, Rtest, are listed in Tables C-1 to C-
3 of Appendix C. Comparisons of the actual failure loads to the theoretical failure loads are given in 
Tables D-1 to D-3 of Appendix D.
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Chapter 4 
Methods of Analysis and Calibrations 

4.1 General 

This chapter contains detailed descriptions of the various methods and techniques employed in the 
analysis of the data produced by this study and the data found in the literature. Specifically discussed 
are the method of least squares, gradient-based optimization, optimization by genetic algorithms, and 
calibrations (method to determine resistance factors). The method of least squares was used to ‘fit’ a 
mathematical function to a given data set; however powerful optimization techniques are required to 
find this function. To lend credibility to the study, two completely different optimization techniques 
were employed. The first technique is a gradient-based method found in an established commercial 
software package. The second technique, a genetic algorithm, was written specifically for this study. 
The method for determining the resistance factors was taken from Section A5 of the Commentary to 
the 2001 Edition of the North American Specification for the Design of Cold Formed Steel Structural 
Members (2001b). 

The intent of this chapter is to discuss the methods of analysis. A detailed discussion of the results 
of the analysis is given in the next chapter. 

4.2 Developing the Model 

Discussed in this section is the development of the mathematical model used to describe the data. The 
optimization of the model is discussed in the next section. 

4.2.1 Method of Least Squares 

Also referred to as regression or curve fitting, the Method of Least Squares (MLS) is a common 
technique for fitting a mathematical function to a set of known data. MLS is useful because it is a 
formalized, unbiased method of curve fitting. All statistical tools, from scientific calculations to 
powerful computer applications, make use of MLS in some form. 

MLS works by minimizing the error between a data set and the function describing the data (herein 
referred to as the trend line). To begin, one must assume a general equation that can describe the data. 
The data may have to be plotted before any trend can be recognized. Equations like y = a x + b 
(linear), y = a x2 + b x + c (quadratic), or y = ax (exponential) are commonly used, but any equation 
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can be used, so long as when plotted it has a shape similar to the data set. It is possible to use 
equations with more than one independent variable. 

The next step is to find the exact form of the trend line. To do this, one must determine the value of 
the coefficients in the trend line for which the sum of the square of the error between the trend line 
and each data point is a minimum. In mathematical terms, one must minimize Equation 4.2-1, where 
Pt is a data point and Pc is the corresponding trend line value.  

 ( )∑
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2  (4.2-1) 

It is important that the error be squared to eliminate any negative error values, otherwise the 
method would only work for data that fell on one side of the trend line. For many single-variable 
equations there are methods established for determining the coefficients that correspond to the 
minimal sum. For most multi-variable equations, there is no such established method. A graphical 
example showing how MLS works is shown in Figure 4.2-1. 
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Figure 4.2-1: Graphical Representation of Method of Least Squares 

For a more in-depth look at the method of least squares and how it applies to multi-variable 
nonlinear problems, the reader can to refer to a text such as “Miller & Freund’s Probablility & 
Statistics for Engineers” by Richard Johnson (1994). 

4.2.2 The Mathematical Model 

The model used in this study is a non-linear equation with four independent variables. The model is 
an optimization problem, where the minimum value of Equation 4.2-2 must be found. It is a complex 
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model that cannot be solved easily by hand methods. The optimization techniques used to solve the 
model are discussed in the next section. 

 

 ∑
=









−








+








−⋅⋅⋅−

n

i i
i

h
i

i
N

i
i

Riyiiti t
hCt

NCt
RCFtCR

1

2 111θsin  (4.2-2) 

Where: 

Rti  =  Sequence of web crippling capacities determined by experiment 
Fyi = Sequence of measured yield strengths 
hi  =  Sequence of web depths (measured in plane of web) 
Ni  =  Sequence of bearing lengths 
Ri  =  Sequence of inside bend radius 
ti  =  Sequence of web thicknesses 
θι  =  Sequence of web inclinations 
C  =  Coefficient 
Ch  =  Web slenderness coefficient 
CN =  Bearing length coefficient 
CR  =  Inside bend radius coefficient 

The model is subject to the following constraints: C is an integer greater than zero; Ch, CN, and CR 
are real numbers greater than zero. 

4.3 Optimization Methods 

Discussed in this section are the methods that were employed to solve the model given in the previous 
section. Two different methods are discussed and the result of the each method is briefly reviewed. 
Refer to the next chapter for detailed results and conclusions of this study. 

4.3.1 Optimizing using the Genetic Algorithm 

Genetic Algorithms (GA) are a topic in the field of optimization. GA’s are simple, easy to understand, 
and easy to implement in computer applications. GA’s are also capable of solving complex problems. 

The concept for GA’s originate with the theory of evolution. The algorithm works by creating a 
large population of random solutions that is tested, mixed, and spliced until an optimal solution is 
found. While the basic concepts are easy to follow and understand, the actual implementation of the 
algorithm requires the user to keep track of a large amount of data and to perform many iterations. As 
such, GA’s are better suited to computer applications than to hand calculations. 
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Before a GA can be implemented, a scheme must first be devised to describe a solution using 
binary numbers. As an example, such a scheme might use a five-bit binary number to describe the 
size of steel reinforcing bar used in a concrete beam. A five-bit binary number can define any integer 
number between 0 and 31, which could represent the diameter of rebar in millimetres. In GA 
terminology, a binary solution is referred to as a chromosome or a DNA string.  

To initialize a GA, it must be provided with a population of randomly created DNA strings. Each 
DNA string represents a different possible solution. The likelihood that any one of the DNA strings in 
the initial population is the optimal solution is small, however, the likelihood that parts of some of the 
DNA strings match the optimal solution is high. The challenge is to find which parts of which DNA 
strings once assembled will give the optimal solution. 

A method of judging the fitness of a DNA string is needed. Using this fitness test, it will be 
possible to determine which DNA strings are closer to the final solution, and therefore, better suited 
to parenting the next generation of solutions. 

Often, penalty functions are included in the fitness test. Penalty functions penalize solutions that 
are too fit. To show why penalty functions are necessary, take the example the problem where a GA 
is employed to maximize the moment capacity of a concrete beam. If the DNA string describes the 
amount of reinforcing steel in the beam, and the fitness test is based on the moment capacity, then it 
follows that the GA will simply increase the amount of reinforcing steel maximum value. The penalty 
function would penalize a solution that results in an over-reinforced beam. This would cause the over-
reinforced beam to appear less fit and prevent the GA from converging on an impractical solution.  

Armed with a fitness test and a population of possible solutions, the GA can begin its first iteration 
by choosing DNA strings to act as parent DNA for the next generation. The parent DNA strings are 
chosen pseudo-randomly, that is, the DNA strings are selected randomly, but with a bias towards the 
DNA strings that scored better on the fitness test. In this way, a larger proportion of information from 
the more-fit DNA strings will be passed to the next generation than from the less fit DNA strings. It 
should be noted that DNA strings could be selected more than once to act as parents. 

Once the parent DNA strings are chosen, the next generation is created. This is done by taking two 
parent DNA strings and swapping sections of the two DNA strings at random locations. This will 
result in two children DNA strings, each one being unique but with some traits from each of the 
parent DNA strings. The children DNA strings will form a new population. The GA will do this for 
several iterations, while continuously checking for convergence. With each repetition, the less-fit 
DNA strings are slowly eliminated from the population and the more-fit DNA strings begin to 
dominate. Once the convergence criteria are met, the algorithm reports its final solution. 
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The last task is to identify the optimized solution, which defines the convergence criteria. One 
common approach is to count the number of repeated DNA strings. Initially, there should be very few 
repeated strings, but with each iteration the less-fit DNA strings are eliminated and the remaining 
DNA strings will become increasingly similar. Once a certain number of DNA strings are identical, 
that string may be declared as the optimal solution. Another method is to remember the fitness of the 
most-fit DNA string in each generation. If that same fitness value is repeated in three or more 
consecutive iterations, it may be declared as the most fit or optimal solution. One may also declare the 
optimal solution to be the most-fit solution after a set number of iterations. 

It is often difficult to ascertain if a final solution truly is the optimal solution. GA’s sometimes 
converge prematurely on an incorrect solution. Often, parameters within the algorithm must be 
‘tweaked’ before the algorithm will give correct results. GA’s must be executed many times to ensure 
that the optimal solution has been found. 

In determining the web crippling coefficients, the GA was used as a secondary means of analysis. 
Genetic algorithms are not fooled by local minima and maxima in the same way as gradient-based 
methods, and as such are the perfect compliment to gradient-based optimization techniques. However, 
genetic algorithms do not reliably produce exact solutions. As such, genetic algorithms are well suited 
as a means of confirming the results from a gradient-based algorithm as well as being an excellent 
method of determining appropriate initial values to avoid local minima/maxima when using a 
gradient-based method of optimization. 

A more detailed discussion of the GA used in this study, including an explanation of the DNA 
strings, string splicing, fitness testing, and convergence criteria have been included with the source 
code in Appendix F. 

4.3.2 Optimizing using Microsoft Excel Solver (Gradient Method) 

Solver is an add-on program for Microsoft Excel designed to optimize mathematical functions with 
constraints. Solver uses the Generalized Reduced Gradient (GRG2) algorithm to optimize nonlinear 
multivariable problems (The Simplex algorithm is used for linear problems). GRG2 was designed by 
Lasdon and Waren of the University of Texas at Austin and Cleveland State University, respectively 
(XL, 2000a and XL, 2000b). 

Gradient-based algorithms use partial derivatives to direct a search for an optimal solution. The 
process begins with a set of variables at some initial value and one or more functions for which to 
optimize. The goal of the algorithm is to find the value of these variables for which the functions are 
maximized. To do this, the algorithm determines the value of the partial derivatives of each function 
for the variables given. When a partial derivative has a numerical value, it is referred to as a gradient 
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(it is also called the ‘slope’ in single variable problems). A positive value gradient indicates that the 
variable should be increased; a negative value gradient indicates that the value should be decreased.  

The algorithm will adjust the variables by some increment based on the value of the gradients. It 
will continue to adjust the variables until all of the gradients approximately equal zero. At this point, 
the functions are maximized and the corresponding values of the dependent variables are known. A 
similar process is used to minimize a set of functions; one must simply change the algorithm so that 
the value of the variables increases with negative gradients and decreases with positive gradients. 

The GRG2 algorithm uses a technique called finite differencing to approximate the partial 
derivatives numerically. Finite differencing works by adjusting each variable a small amount and 
observing the rate of change. GRG2 is capable of both forward differencing and central differencing. 
In forward differencing, the variable is adjusted in just one direction to estimate the gradient. In 
central differencing, the variable is adjusted in both directions. Central differencing requires more 
computational effort, but is more accurate for gradients that change rapidly. 

The GRG2 algorithm has one weakness: local minima and maxima. In many problems, there exist 
local maxima and minima that are not the true maximum or minimum for the entire system. In single 
variable problems, this appears as peaks and valleys in the plot (see Figure 4.3-1). The true maximum 
is the highest peak and the true minimum is the lowest valley. GRG2 is unable to detect multiple local 
maxima and minima; it will declare the first maxima or minima it finds as the true maximum or 
minimum for the system. To compensate for this, one must execute the algorithm several times using 
different initial values. 

 Local Maxima
True Maximum

Local Minima

x

f(x) 

True Minimum

Variable Constraints  

Figure 4.3-1: Example of Local and True Minima and Maxima with Variable Constraints. 

For instructions on how to use Solver, refer to the on-line help system within Excel. Microsoft has 
provided a complete on-line help system for Excel that provides detailed instructions on how to use 
Solver to optimize both linear and nonlinear problems. 
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4.3.3 Results of Optimization 

Unfortunately, the results determined from a genetic algorithm are very sensitive to the fitness tests, 
the population size, and the convergence criteria used by the algorithm. In order to get repeatable 
results, these three parts of the algorithm may need to be revised several times. 

It is clear from the results that the genetic algorithm used in this study is not yet perfect. The 
genetic algorithm did not yield repeatable results. However, the results were always from a small 
range of possible results. This would suggest that the correct result, being the values of C, Ch, CR, and 
CN for which Equation 4.2-2 is a minimum, lies somewhere within the range of results produced by 
the genetic algorithm. For fastened support conditions, the range of results produced by the genetic 
algorithm is given in Table 4.3-1. When the values of the coefficients as determined by the genetic 
algorithm were used in Equation 4.2-2, the summation value was always less than 550. 

Table 4.3-1: Range of Results From Genetic Algorithm 

 C CR CN Ch 

Upper Limit 4 0.09 0.30 0.015 

Lower Limit 3 0.03 0.18 0.031 
 

After many trials using MS Excel Solver, Equation 4.2-2 was found to be a minimum using the 
fastened support condition data when the coefficients are: C = 4, CR = 0.039572, CN = 0.250063, and 
Ch = 0.024935. These values are within the range of values suggested by the genetic algorithm, and 
yield a summation value of 382.7, which is lower than any of the summation values calculated using 
the coefficients determined by the genetic algorithm, suggesting that the true minimum has been 
found. 

Although it is reassuring to have two methods that are in close agreement, MS Excel Solver is the 
better method for optimizing Equation 4.2-2. The range of results that was yielded does not justify the 
additional time required to write a genetic algorithm. It is recommended that future researchers use 
only MS Excel Solver, although they must be cautioned that numerous trials using different starting 
values will be necessary. 

A detailed discussion of the results of this study, including results for unfastened data and partially-
fastened data, is given in Chapter 5. 

4.4 Calibration 

Resistance factors, φ, are used with the LSD design method in Canada and with the LRFD design 
method in the US and Mexico. The resistance factors are determined in conformance with each 
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country’s respective load factors, dead to live load ratios, and target reliability index, β. For members 
the target reliability index is 2.5 for the US and Mexico and 3.0 for Canada (NAS, 2001a).  

A satisfactory design can be obtained by equating the factored resistance to the factored loads, as 
follows: 

 nLnDn LDR ααφ +=  (4.5-1) 

Where Rn is the nominal resistance, Dn is the nominal dead load intensity, Ln is the nominal live 
load intensity, and αD and αL are the dead and live load factors, respectively, such that the load 
combinations are 1.2D + 1.6L for the US and Mexico and 1.25D + 1.5L for Canada. The dead to live 
load ratios, Dn/Ln, are 1/5 for the US and Mexico and 1/3 for Canada (NAS, 2001a). 

Considering Equation 4.5-1, it can be shown that the resistance factors, φ, can be determined as 
follows. 

For U.S. and Mexico: 
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Mm = Mean value of the material factor, M, given as 1.10 
Fm = Mean value of the fabrication factor, F, given as 1.00  
Pm = Mean value of the professional factor, P, for the tested component 
βo = Target reliability index, equal to 2.5 for structural members in the U.S. and Mexico and 3.0 

for structural members in Canada 
VD = Factor of variation of the dead load intensities 
VL = Factor of variation of the live load intensities 
VM = Coefficient of variation of the material factor, given as 0.10 
VF = Coefficient of variation of the fabrication factor, given as 0.05 
VP = Coefficient of variation of the test results, but not less than 6.5% 
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The values of Mm = 1.10, VM = 0.10, Fm = 1.00, and VF = 0.05 were taken from                                                       
Table F1 – Statistical Data for the Determination of Resistance Factors in the Commentary on the 
2001 Edition of the North American Specification for the Design of Cold-Formed Steel Structural 
Members (2001b). 

By knowing the resistance factor, φ, the corresponding factor of safety, Ω, can be computed as 
follows: 

For the US and Mexico 

 
φ





 +

+
=Ω

1

6.12.1

n

n

n

n

L
D

L
D

 = 1.533 / φ (4.5-5) 

The results of calibration analysis are given in Chapter 5.
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Chapter 5 
Test Results and Comparisons 

5.1 General 

This chapter is divided into four main sections: the web crippling coefficients for the fastened and 
unfastened support conditions, the investigation of the partially-fastened condition, the investigation 
of re-entrant decks, and a general discussion of the conclusions of the study. The resistance factors 
and factors of safety are also discussed. 

5.2 Web Crippling Coefficients for Multi-Web Deck Sections 

The ultimate goal of this study is to determine appropriate values for the web coefficients, , C, CR, CN, 
and Ch, to be used so that the web crippling expression given as Equation 5.2-1 can be applied to 
multi-web deck sections. 

 




 −





 +





 −= t

hCt
NCt

RCFCtP hNRyn 111sin2 θ  (5.2-1) 

Using the methods of analysis described in Chapter 4 and all suitable available data (comprising 
the new test data from this study, and previous data from Bhakta (1992) and Wu (1997)) the web 
crippling coefficients were determined to be as shown in Table 5.2-1. In the case where the specimen 
was fastened to the support, only data pertaining to specimens that were fully-fastened, that is, 
specimens meeting the fastening requirements of the Steel Deck Institute (SDI) and the Canadian 
Sheet Steel Building Institute (CSSBI), were considered in determining the coefficients. Specimens 
not meeting these fastening requirements were called ‘partially-fastened’ and were not used in any 
calculations of the web crippling coefficients. 

The ranges of the test specimen parameters were: 299 MPa (43.4 ksi) < Fy < 674 MPa (97.8 ksi); 
1.41 < R/t < 19.9; 20.0 < N/t < 110; 20.8 < h/t < 211; and 71º< θ < 108º. These ranges apply to fully-
fastened, partially-fastened, and unfastened support conditions 

Table 5.2-1: Web Crippling Coefficients for EOF Loading of Multi-Web Deck Sections 

Support Condition C CR CN Ch 

Unfastened 3 0.04 0.29 0.028 

Fastened 4 0.04 0.25 0.025 
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Reviewing the coefficients listed in Table 5.2-1, one can observe that except for the coefficient, C, 
the coefficients are similar between the unfastened and fastened end conditions. The value of C 
increases by 33% from the unfastened to the fastened condition, suggesting that one can expect a 33% 
increase in web crippling capacity when multi-web deck sections are fastened to their supports. This 
is in close agreement with a previous study by Bhakta (1992) that found an increase of 37% in web 
crippling capacity when fasteners were used. 

The coefficients listed in Table 5.2-1 are different from the coefficients of C = 3, CR = 0.08,  
CN = 0.70, Ch = 0.055, as given in the NAS (2001a). These coefficients are based on previous studies 
that did not distinguish between the fastened and the unfastened end conditions. Hence, the same 
values are listed for both conditions. One can compare the effectiveness of the new coefficients to the 
coefficients listed in the NAS (2001a) by comparing the ratios of Rtest-to-Rcalc. Rtest is the recorded test 
load on the deck section at the failure end. Rcalc is the theoretical load capacity using Equation 2.10-1 
with the appropriate web crippling coefficients. Given in Table 5.2-2 is a summary of this 
comparison. 

Table 5.2-2: Comparison of NAS (2001a) and Proposed Coefficients 

Coefficients 
Used 

Support 
Condition 

Number 
of Tests 

Mean 
Rtest/Rcalc 

Coefficient of Variation 
of Rtest/Rcalc 

Unfastened 92 0.977 0.484 
NAS (2001a) 

Fastened 77 1.273 0.306 

Unfastened 92 1.006 0.318 
Proposed 

Fastened 77 1.059 0.129 
 
From Table 5.2-2, one can observe the current NAS design procedure that uses the same 

coefficients for both conditions is overly conservative for the fastened support condition. One can 
also observe that in comparing just the unfastened support condition data shows a small improvement 
in the average test-to-calculated value, however the improvement in the coefficient of variation is 
more significant. This indicates that the new web crippling coefficients result in more consistent 
results than the NAS coefficients. 

One can observe from Table 5.2-2 that in general the coefficient of variation is much larger for the 
unfastened condition than for the fastened condition. This is due to the large scatter in the unfastened 
data caused by the tendency of many unfastened deck sections to ‘spread’ before web crippling 
occurs, resulting in a lower failure load. This tendency to spread is difficult to predict in unfastened 
deck sections, but is more common to sections with web inclinations less than 75º. Section depth, 
width of the bearing plate, and coefficient of friction between the zinc coating of the specimen and 
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the metal surface of the bearing plate also influenced the specimens tendency to spread. The 
coefficient of friction was not measured because the possibility of specimens spreading had not been 
considered at the outset of this study. 

Shown in Figure 5.2-1 is a diagram illustrating how multi-web deck sections can spread. Shown in 
Figure 5.2-2 is a photograph of an unfastened multi-web deck section spreading as indicated in Figure 
5.2-1. 

Original Deck Profile

 

Figure 5.2-1: Spreading of Unfastened Deck 

 

Figure 5.2-2: Spreading of a 4 Web Deck Section  

The resistance factors and factors of safety (U.S. and Mexico only) have been determined in 
accordance with Section A5 of the Commentary to the 2001 Edition of the North American 
Specification of Cold Formed Steel Structural Members (2001b). The method outlined in Section A5 
is discussed in Section 4.5 of this document. The resistance factors and factors of safety are given in 
Table 5.2-3. 

Table 5.2-3: Factors of Safety and Resistance Factors for EOF Loading of Multi-Web Decks 

U.S. and Mexico Canada Support 
Condition φ Ω φ 

Unfastened 0.626 2.45 0.494 

Fastened 0.905 1.69 0.773 
 
There exists data from previous work that was not considered in this analysis. Yu (1981) and Avci 

(2002) have undertaken studies involving multi-web deck sections. During testing, both Yu and Avci 
used a metal strap attached to the lower flanges to try and control spreading under unfastened 
conditions. It is believed that this strap would also restrict any potential rotation that would occur in 
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the outer flanges (This rotation mechanism is discussed more thoroughly in the next section). Because 
of this, the web crippling capacity of the specimens tested by Yu and by Avci is greater and does not 
agree with the test results of this and other studies. It should be noted that Wu (1997), whose data was 
included in this study, clamped a steel bar to the lower flanges of his specimens at the load point 
location to control spreading of the deck sections. However, he placed his clamps far enough away 
from the ends of the specimen that they did not interfere with the flange rotation. 

Listed in Table 5.2-4 are the mean and coefficient of variation of the test-to-calculated ratios using 
Yu’s data (non-embossed sections only), Avci’s data, and the proposed coefficients. As expected, the 
mean values show that the proposed web crippling coefficients under-predict the capacity of these 
specimens, which is due to the increased stiffness of the outer webs from the metal strapping. Also, 
the magnitude of the mean values clearly shows that Yu’s data and Avci’s data are different from 
other test data and therefore cannot be included in the analysis portion of this study. 

Table 5.2-4: Comparison of Test Data by Yu (1981) and Avci (2002) 

Data Source Support 
Condition 

Number 
of Tests 

Mean 
Rtest/Rcalc 

Coefficient of Variation 
of Rtest/Rcalc 

Yu* Unfastened 18 1.586 0.185 

Unfastened 39 1.458 0.202 
Avci 

Fastened 39 1.440 0.260 
*Only non-embossed specimens were considered. 

Surprisingly, the mean values in Table 5.2-4 concerning Avci’s data show that the metal strapping 
increased the web crippling capacity of both the fastened and the unfastened support conditions by 
45%. The strapping was not expected to increase the capacity of the fastened data to the same degree 
as with the unfastened data. This suggests that the metal strapping has a greater ability to restrain 
flange rotation, and thus a greater influence on web crippling capacity, than do the fasteners. 

5.3 Partially-fastened Support Condition 

Also investigated in this study was End One-Flange loading of deck sections under partially-fastened 
support conditions. The deck sections were considered to be partially-fastened to the supports 
whenever fasteners were used, but the fastener spacing did not meet requirements of SDI and CSSBI. 
This includes fastener spacing greater than 450 mm (18 in.), undersized puddle welds, undersized 
fillet welds, or undersized screws. Only the fastener spacing requirement was considered in this study. 

Contained in Table 5.3-1 are the summary values of the partially-fastened deck sections. The data 
was examined using both unfastened and fastened end condition coefficients to see which set of 
coefficients best represents the data. It was decided not to determine new coefficients for the 
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partially-fastened conditions. Because partially-fastened support conditions do not meet SDI and 
CSSBI requirements, web crippling coefficients for this case would not be useful to many designers, 
and therefore introducing a third support condition would only complicate the process of determining 
web crippling capacity without adding any significant value.  

Table 5.3-1: Comparison of Partially-Fastened Test Results 

Coefficients 
Used 

Number 
of Tests 

Mean 
Rtest/Rcalc 

Coefficient of Variation 
of Rtest/Rcalc 

Unfastened 78 1.271 0.137 

Fastened 78 1.009 0.132 
 

While one might reason that it would be best to be conservative and use the coefficients for 
unfastened support conditions, one can see from Table 5.3-1 that this would be overly conservative. 
Based on using the fastened coefficients to determine the web crippling capacity of partially-fastened 
test specimens, the resistance values are 0.733 and 0.859 for Canada and the U.S., respectively, and 
the factor of safety for ASD is 1.78. These values are similar to the resistance values and factor of 
safety for the fastened test specimens (see Table 5.2-3). 

Partially-fastened deck sections were always fastened at the outside flanges. It is reasonable to 
assume that fasteners have a greater influence on the web crippling capacity if placed at the outside 
flanges which, being connected on only one side by a web, are normally less restrained against 
deformation than the inside flanges. This idea is illustrated by means of a diagram in Figure 5.3-1. A 
photograph showing the deformed shape of an unfastened multi-web deck is shown in Figure 5.3-2 in 
which one can observe that the outside flanges experience greater deformation than the inside flanges. 

 

 

Less restraint on the
outside flanges causes
larger deflections and
lower web crippling
capacities in the
outside webs. 

Inside flanges are 
restrained against 
deformation by webs 
on two sides.

 

Figure 5.3-1: Rotation of Inside and Outside Flanges 
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Figure 5.3-2: Photograph Showing Larger Deformation in Outside Flanges and Webs 

5.4 Re-entrant Multi-Web Deck Sections 

Re-entrant deck sections are different from open multi-web deck sections in that their web inclination 
is at an angle greater than 90º. Re-entrant decks are commonly used when a concrete topping is to be 
added to the deck. This is because the geometry of a re-entrant deck provides better interlocking 
between the concrete and the steel deck. 

Part of this study was to investigate re-entrant multi-web deck sections to see if they behaved 
similarly to common multi-web decks under web crippling. Currently, the web crippling coefficients 
are limited to sections with web inclinations of 90º or less. The re-entrant decks were tested under 
fastened, unfastened, and partially-fastened conditions. Given in Table 5.4-1 are the comparison 
results. The resistance factors and factors of Safety are given in Table 5.4-2. 

Table 5.4-1: Results of Re-entrant Decks Using Multi-Web Coefficients 

Support Condition Coefficients 
Used 

Number 
of Tests 

Mean 
Rtest/Rcalc 

Coefficient of Variation 
of Rtest/Rcalc 

Unfastened Unfastened 12 1.205 0.080 

Unfastened Fastened 12 0.962 0.082 

Fastened Fastened 10 0.965 0.071 

Partial Unfastened 14 1.244 0.089 

Partial Fastened 14 0.996 0.091 

All Fastened 36 0.976 0.082 
 
As can be observed from Table 5.4-1, the best correlation with re-entrant decks appears to be the 

coefficients for the fastened support condition regardless of fastening condition. From these results, it 
would appear that fasteners do not increase the web crippling capacity of re-entrant decks, which, in 
part is due to the orientation of the re-entrant deck during testing. The re-entrant decks were tested 
with the larger flange down, on the tension side, which is the more common orientation in practice for 
these decks. This is ‘upside-down’ in comparison to the other multi-web decks, which were tested 
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with the larger flange up, on the compression side. This orientation causes the outside web elements 
to be as equally restrained as the inside web elements at the surface of the bearing plate. Therefore, 
the mechanism described in Figure 5.4-1 cannot occur and the difference in load capacity between 
fastened and unfastened re-entrant deck sections will be small. 

 

Figure 5.4-1: Failure of Re-entrant Deck Section 

In addition, the coefficient of variation is much lower for re-entrant decks than it was for regular 
multi-web decks. The most likely explanation for the improved coefficient of variation is that the 
geometry of the re-entrant deck does not permit the deck to spread. If it were to spread, the flanges 
would move towards each other and the adjacent webs would meet. Because the coefficient of 
variation is changed, resistance factors and factor of safety were calculated for re-entrant decks and 
given in Table 5.4-2. 

Table 5.4-2: Resistance Factors and Factors of Safety for Re-entrant Decks 

U.S. and Mexico Canada 
Support Condition 

φ Ω φ 

Unfastened* 0.863 1.78 0.747 

Fastened 0.873 1.76 0.757 

All Re-entrant Data* 0.875 1.75 0.758 
*Using coefficients for fastened conditions 

Again, the resistance factors and factors of safety for re-entrant decks, regardless of support 
condition, are similar to the resistance factors and factors of safety for regular decks under fully-
fastened support conditions. One would expect that the improved coefficient of variation for re-
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entrant decks would give resistance factors and factors of safety closer to one, but the less 
conservative mean Rtest-to-Rcalc ratio appears to have negated any such effect. 

Regardless of support conditions, the web crippling capacity of re-entrant deck sections can be 
determined by using the coefficients of regular multi-web deck sections with fixed support 
conditions. This also suggests that the re-entrant data can be incorporated into the data set for the 
determination of web crippling coefficients for the fastened support condition. 

Including the re-entrant data does not change the coefficients significantly. The values of the 
modified coefficients, considering fastened support conditions only, are: C = 4, CR = 0.03, CN = 0.24, 
and Ch = 0.025. Presented in Table 5.4-3 is the statistical comparison of the modified coefficients 
including the re-entrant data and the coefficients from Table 5.2-1. One can observe upon reviewing 
the data of Table 5.4-3 that the modified coefficients do not represent a significant change in 
effectiveness. In fact, the data would suggest that the coefficients proposed in Table 5.2-1 are still a 
better predictor of the web crippling capacity even though the re-entrant data was not included in their 
determination. 

Table 5.4-3: Comparison of Coefficients When Re-entrant Data is Incorporated 

Data Coefficients 
Used 

Number 
of Tests 

Mean 
Rtest/Rcalc 

Coefficient of 
Variation of Rtest/Rcalc 

Fastened Re-entrant and 
Fastened Multi-web Fastened 86 1.047 0.128 

All Re-entrant and Fastened 
Multi-web Fastened 112 1.031 0.123 

Fastened Re-entrant and 
Fastened Multi-web Modified 86 1.048 0.128 

All Re-entrant and Fastened 
Multi-web Modified 112 1.034 0.123 

 

5.5 Discussion and Recommendations 

As was demonstrated by the results shown in Table 5.2-2, improved web crippling coefficients for the 
case of End One-Flange loading of multi-web sections were developed in this study. While the 
average test-to-calculated load ratio did not improve significantly, the coefficient of variation did 
improve, indicating that the new coefficients are more reliable than the previous coefficients. 

Considering the coefficients, it is interesting that only the coefficient, C, changes significantly 
between the fastened and unfastened conditions. This does follow some logic; i.e., since the 
geometric parameters do not change with the different support conditions, it would follow that the 
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coefficients, CR, CN, and Ch, all of which correspond to different geometric parameters, also would 
not change. The value of the coefficient, C, increased by 33% between the fastened and unfastened 
conditions. This is similar to findings by Bhakta (1992) where the web crippling capacity of deck 
sections increase by 37% when the decks were fastened to their supports. 

It was found that partially-fastened deck sections can use the same coefficients as fully-fastened 
deck sections. Looking at the load-stroke curves, one can observe that the failure loads for partially-
fastened specimens are generally lower than for fully-fastened specimens, although they are higher 
than the failure loads of the unfastened specimens. There is enough scatter in the data that the fully-
fastened and partially-fastened specimens appear statistically to be approximately the same. 

However, it is not recommended that the NAS (2001a) be amended to allow partially-fastened 
decks to be treated as fully-fastened, or that the fastening requirements of multi-web decks be 
lessened. There are other reasons for the fastening requirements of a fully-fastened deck that must 
also be considered (e.g. wind uplift). 

It was found that re-entrant deck sections behave similarly to fastened multi-web deck sections, 
regardless of their support condition. It is therefore recommended that the NAS be amended so that 
re-entrant deck sections are included as multi-web deck sections by eliminating the restriction that the 
web inclination must be less than or equal to 90º. 

Since there are two different failure mechanisms that can result with EOF loading of multi-web 
deck section web crippling, perhaps there should be two different equations for predicting web 
crippling. It would be worth investigating to see if separate equations would be warranted to predict 
the web arc yielding capacity and the web rolling capacity of a web element might better predict the 
web crippling capacity of multi-web deck sections subjected to EOF loading. This would be similar to 
the equations for web crippling and yielding of hot rolled wide flange beams in clause 15.9 of 
CAN/CSA-S16-94 (1994a), where the smaller result of two equations is taken to be the web crippling 
capacity. During testing, it was observed that the horizontal length of the deformation in the web was 
proportional to the bearing length. As this was beyond the original scope of study, the size of the web 
deformation was not recorded and further study would be necessary to confirm this observation. If 
such a link were to be proven, it might enhance the theory regarding the influence of bearing length 
on web crippling, and possibly further refine the predictability of the web crippling capacity. 

It is therefore recommended that further research, involving a theoretical study and 
experimentation, be undertaken to examine the possibility of there being two equations, one that 
would predict the web rolling mechanism and one that would predict the web arc mechanism. 
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Appendix A 
Material Properties of Specimens 

Table A-1: Mechanical Properties of Specimens 

Test Series ID 
Base Steel 

Thickness*, mm 
(in.) 

Yield Strength*, Fy,
MPa (ksi) 

Ultimate Strength* 
Fu, MPa (ksi) 

Percent 
Elongation** (%) 

C1 1.16 (0.046) 340 (49.3) 423 (61.4) 35.2 
C2 0.85 (0.033) 310 (45.0) 372 (54.0) 37.2 
C3 0.86 (0.034) 304 (44.1) 365 (52.9) 37.6 
E1 0.73 (0.029) 345 (50.0) 421 (61.1) 33.9 
E2 0.90 (0.035) 326 (47.3) 376 (54.5) 35.8 
E3 1.18 (0.044) 314 (45.5) 461 (66.9) 31.9 
E4 1.13 (0.044) 309 (44.8) 389 (56.4) 32.7 
E5 0.88 (0.035) 375 (54.4) 415 (60.2) 34.1 
R1 0.72 (0.028) 310 (45.0) 400 (58.0) 30.6 
R2 0.87 (0.034) 327 (47.4) 411 (59.6) 30.2 
R3 1.18 (0.046) 341 (49.5) 381 (55.3) 36.9 
T1 0.72 (0.028) 335 (48.6) 410 (59.5) 29.7 
T2 0.88 (0.035) 349 (50.6) 421 (61.1) 29.3 
T3 1.13 (0.044) 329 (47.7) 391 (56.7) 33.7 
U1 1.11 (0.044) 299 (43.4) 386 (56.0) 36.2 
U2 0.87 (0.034) 337 (48.9) 418 (60.6) 32.7 
U3 0.68 (0.027) 329 (47.7) 417 (60.5) 31.5 
U4 0.88 (0.035) 319 (46.3) 395 (57.3) 35.0 
U5 0.89 (0.035) 347 (50.3) 400 (58.0) 36.3 
U6 1.15 (0.045) 300 (43.5) 380 (55.1) 38.3 
U7 1.43 (0.056) 306 (44.4) 380 (55.1) 37.7 
U8 1.16 (0.046) 344 (49.9) 413 (59.9) 33.3 
U9 0.88 (0.035) 326 (47.3) 401 (58.2) 34.6 
V1 0.72 (0.028) 321 (46.6) 384 (55.7) 36.9 
V2 1.19 (0.047) 322 (46.7) 374 (54.2) 38.9 
V3 0.86 (0.034) 328 (47.6) 395 (57.3) 36.6 
V4 0.72 (0.028) 335 (48.6) 380 (55.1) 37.4 
V5 1.19 (0.047) 311 (45.1) 367 (53.2) 36.8 
W1 0.91 (0.036) 663 (96.2) 668 (96.9) 4.59 
W2 1.20 (0.047) 674 (97.8) 683 (99.1) 9.67 

*Properties are based on the average of three coupon tests 
**Elongation over 50 mm gauge length, based on the average of three coupon tests 
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Appendix B 
Geometric Properties of Specimens 

5.6  
Table B-1: Geometric Properties of Unfastened Specimens 

Test Series Specimen # of Webs θ (º) t, mm (in.) R/t N/t h/t 
CAN30-4-1-NONE 4 77 1.16 (0.046) 2.76 20.7 59.4 C1 
CAN30-4-2-NONE 4 77 1.16 (0.046) 2.76 43.1 59.4 
CAN30-4-1-NONE 4 77 0.85 (0.033) 4.71 28.2 79.6 
CAN30-4-2-NONE 4 77 0.85 (0.033) 4.71 58.8 79.6 
CAN30-4-2-NONE 4 77 0.85 (0.033) 4.71 58.8 79.6 

C2 

CAN30-4-3-NONE 4 77 0.85 (0.033) 4.71 88.2 79.6 
 CAN30-4-1-NONE 4 77 0.86 (0.034) 4.65 27.9 78.6 

C3 CAN30-4-2-NONE 4 77 0.86 (0.034) 4.65 58.1 78.6 
 CAN30-4-3-NONE 4 77 0.86 (0.034) 4.65 87.2 78.6 
 WHE45-4-1-NONE 4 84 0.91 (0.036) 6.15 26.4 113 

W1 WHE45-4-2-NONE 4 84 0.91 (0.036) 6.15 54.9 113 
 WHE45-4-3-NONE 4 84 0.91 (0.036) 6.15 82.4 113 
 WHE45-4-1-NONE 4 84 1.20 (0.047) 4.67 20.0 85.2 

W2 WHE45-4-2-NONE 4 84 1.20 (0.047) 4.67 41.7 85.2 
 WHE45-4-3-NONE 4 84 1.20 (0.047) 4.67 62.5 85.2 
 VIC30-4-1-NONE 4 71 0.72 (0.028) 6.61 33.3 96.0 

V1 VIC30-4-2-NONE 4 71 0.72 (0.028) 6.61 69.4 96.0 
 VIC30-4-3-NONE 4 71 0.72 (0.028) 6.61 104 96.0 
 VIC30-4-2-NONE 4 74 1.19 (0.047) 4.00 42.0 56.7 

V2 VIC30-4-1-NONE 4 74 1.19 (0.047) 4.00 20.2 56.7 
 VIC30-4-3-NONE 4 74 1.19 (0.047) 4.00 63.0 56.7 
 VIC30-8-1-NONE 8 85 0.86 (0.034) 5.08 27.9 78.3 

V3 VIC30-8-2-NONE 8 85 0.86 (0.034) 5.08 58.1 78.3 
 VIC30-8-3-NONE 8 86 0.86 (0.034) 5.08 87.2 78.2 
 VIC30-8-1-NONE 8 86 0.72 (0.028) 6.07 33.3 93.6 

V4 VIC30-8-2-NONE 8 85 0.72 (0.028) 6.07 69.4 93.8 
 VIC30-8-3-NONE 8 85 0.72 (0.028) 6.07 104 93.8 
 VIC30-8-3-NONE 8 85 1.19 (0.047) 3.67 63.0 56.3 

V5 VIC30-8-2-NONE 8 85 1.19 (0.047) 3.67 42.0 56.3 
 VIC30-8-1-NONE 8 85 1.19 (0.047) 3.67 20.2 56.3 
 CMRM30-6-3-NONE 6 82 0.72 (0.028) 19.9 104.2 68.2 

R1 CMRM30-6-2-NONE 6 82 0.72 (0.028) 19.9 69.4 68.2 
 CMRM30-6-1-NONE 6 82 0.72 (0.028) 19.9 33.3 68.2 
 CMRM30-6-3-NONE 6 82 0.87 (0.034) 16.4 86.2 56.3 

R2 CMRM30-6-2-NONE 6 82 0.87 (0.034) 16.4 57.5 56.3 
 CMRM30-6-1-NONE 6 82 0.87 (0.034) 16.4 27.6 56.3 
 CMRM30-6-3-NONE 6 81 1.18 (0.046) 12.1 63.6 41.4 

R3 CMRM30-6-2-NONE 6 81 1.18 (0.046) 12.1 42.4 41.4 
 CMRM30-6-1-NONE 6 81 1.18 (0.046) 12.1 20.3 41.4 

CAN15-12-1-NONE 12 71 0.88 (0.035) 8.11 27.3 26.9 T2 
CAN15-12-3-NONE 12 71 0.88 (0.035) 8.11 85.2 26.9 
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Table B-1: Continued 

Test Series Specimen # of Webs θ (º) t, mm (in.) R/t N/t h/t 
 CAN15-12-1-NONE 12 70.5 1.13 (0.044) 6.32 21.2 20.8 

T3 CAN15-12-2-NONE 12 70.5 1.13 (0.044) 6.32 66.4 20.8 
 CAN15-12-3-NONE 12 70.5 1.13 (0.044) 6.32 44.2 20.8 
 USD60-4-3-NONE 4 89 1.11 (0.044) 2.52 67.6 129 

U1 USD60-4-2-NONE 4 89 1.11 (0.044) 2.52 45.0 129 
 USD60-4-1-NONE 4 89 1.11 (0.044) 2.52 21.6 129 
 USD60-4-1-NONE 4 90 0.87 (0.034) 3.22 27.6 165 

U2 USD60-4-2-NONE 4 90 0.87 (0.034) 3.22 57.5 165 
 USD60-4-3-NONE 4 90 0.87 (0.034) 3.22 86.2 165 
 USD60-4-1-NONE 4 90 0.68 (0.027) 4.12 35.3 211 

U3 USD60-4-2-NONE 4 90 0.68 (0.027) 4.12 73.5 211 
 USD60-4-3-NONE 4 90 0.68 (0.027) 4.12 110 211 
 USD45-4-1-NONE 4 85.5 0.88 (0.035) 4.51 27.3 122 

U4 USD45-4-2-NONE 4 85.5 0.88 (0.035) 4.51 56.8 122 
 USD45-4-3-NONE 4 85.5 0.88 (0.035) 4.51 85.2 122 
 USD45-4-1-NONE 4 85.5 0.89 (0.035) 4.46 27.0 121 

U5 USD45-4-2-NONE 4 85.5 0.89 (0.035) 4.46 56.2 121 
 USD45-4-3-NONE 4 85.5 0.89 (0.035) 4.46 84.3 121 
 USD45-4-1-NONE 4 88 1.15 (0.045) 3.45 20.9 93.0 

U6 USD45-4-2-NONE 4 88 1.15 (0.045) 3.45 43.5 93.0 
 USD45-4-3-NONE 4 88 1.15 (0.045) 3.45 65.2 93.0 
 USD75-4-1-NONE 4 90 1.43 (0.056) 1.94 16.8 126 

U7 USD75-4-2-NONE 4 90 1.43 (0.056) 1.94 35.0 126 
 USD75-4-3-NONE 4 90 1.43 (0.056) 1.94 52.4 126 
 USD75-4-1-NONE 4 90 1.16 (0.046) 2.39 20.7 155 

U8 USD75-4-2-NONE 4 90 1.16 (0.046) 2.39 43.1 155 
 USD75-4-3-NONE 4 90 1.16 (0.046) 2.39 64.7 155 
 USD75-4-1-NONE 4 89 0.88 (0.035) 3.16 27.3 205 

U9 USD75-4-2-NONE 4 89 0.88 (0.035) 3.16 56.8 205 
 USD75-4-3-NONE 4 89 0.88 (0.035) 3.16 85.2 205 
 CAN15-12-2-NONE 12 71.5 0.72 (0.028) 9.92 69.4 32.9 

T1 CAN15-12-3-NONE 12 71.5 0.72 (0.028) 9.92 104 32.9 
 CAN15-12-1-NONE 12 71.5 0.72 (0.028) 9.92 33.3 32.9 

EPIC20-8-1-NONE 8 109 0.73 (0.029) 3.81 32.9 58.0 E1 
EPIC20-8-2-NONE 8 109 0.73 (0.029) 3.81 68.5 58.0 
EPIC20-8-2-NONE 8 108 0.9 (0.035) 3.09 55.6 46.6 E2 
EPIC20-8-1-NONE 8 108 0.9 (0.035) 3.09 26.7 46.6 
EPIC20-8-1-NONE 8 105 1.18 (0.046) 2.35 20.3 34.7 E3 
EPIC20-8-2-NONE 8 105 1.18 (0.046) 2.35 42.4 34.7 

 EPIC40-6-1-NONE 6 104.5 1.13 (0.044) 1.41 21.2 77.6 
E4 EPIC40-6-3-NONE 6 104.5 1.13 (0.044) 1.41 66.4 77.6 

 EPIC40-6-2-NONE 6 104.5 1.13 (0.044) 1.41 44.2 77.6 
 EPIC40-6-1-NONE 6 107 0.88 (0.035) 1.80 27.3 101 

E5 EPIC40-6-2-NONE 6 107 0.88 (0.035) 1.80 56.8 101 
 EPIC40-6-3-NONE 6 107 0.88 (0.035) 1.80 85.2 101 
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Table B-2: Geometric Properties of Fastened Specimens 

Test Series Specimen # of Webs θ (º) t, mm (in.) R/t N/t h/t 
 CAN30-4-1-ALL 4 77 1.16 (0.046) 2.76 20.7 59.4 

C1 CAN30-4-2-ALL 4 77 1.16 (0.046) 2.76 43.1 59.4 
 CAN30-4-1-ALL 4 77 1.16 (0.046) 2.76 20.7 59.4 
 CAN30-4-1-ALL 4 77 0.85 (0.033) 4.71 28.2 79.6 

C2 CAN30-4-2-ALL 4 77 0.85 (0.033) 4.71 58.8 79.6 
 CAN30-4-3-ALL 4 77 0.85 (0.033) 4.71 88.2 79.6 
 CAN30-4-1-ALL 4 77 0.86 (0.034) 4.65 27.9 78.6 

C3 CAN30-4-2-ALL 4 77 0.86 (0.034) 4.65 58.1 78.6 
 CAN30-4-3-ALL 4 77 0.86 (0.034) 4.65 87.2 78.6 

WHE45-4-1-ALL 4 84 0.91 (0.036) 6.15 26.4 113 
WHE45-4-2-ALL 4 84 0.91 (0.036) 6.15 54.9 113 
WHE45-4-3-ALL 4 84 0.91 (0.036) 6.15 82.4 113 

W1 

WHE45-4-3-ALL 4 84 0.91 (0.036) 6.15 82.4 113 
 WHE45-4-1-ALL 4 84 1.20 (0.047) 4.67 20.0 85.2 

W2 WHE45-4-2-ALL 4 84 1.20 (0.047) 4.67 41.7 85.2 
 WHE45-4-3-ALL 4 84 1.20 (0.047) 4.67 62.5 85.2 

VIC30-4-1-ALL 4 71 0.72 (0.028) 6.61 33.3 96.0 
VIC30-4-1-ALL 4 71 0.72 (0.028) 6.61 33.3 96.0 
VIC30-4-2-ALL 4 71 0.72 (0.028) 6.61 69.4 96.0 

V1 

VIC30-4-3-ALL 4 71 0.72 (0.028) 6.61 104 96.0 
 VIC30-4-2-ALL 4 74 1.19 (0.047) 4.00 42.0 56.7 

V2 VIC30-4-1-ALL 4 74 1.19 (0.047) 4.00 20.2 56.7 
 VIC30-4-3-ALL 4 74 1.19 (0.047) 4.00 63.0 56.7 
 VIC30-8-1-ALL 8 85 0.86 (0.034) 5.08 27.9 78.3 

V3 VIC30-8-3-ALL 8 85 0.86 (0.034) 5.08 87.2 78.3 
 VIC30-8-2-ALL 8 86 0.86 (0.034) 5.08 58.1 78.2 
 VIC30-8-1-ALL 8 86 0.72 (0.028) 6.07 33.3 93.6 

V4 VIC30-8-2-ALL 8 85 0.72 (0.028) 6.07 69.4 93.8 
 VIC30-8-3-ALL 8 85 0.72 (0.028) 6.07 104 93.8 

VIC30-8-2-ALL 8 85 1.19 (0.047) 3.67 42.0 56.3 V5 
VIC30-8-1-ALL 8 85 1.19 (0.047) 3.67 20.2 56.3 

 CMRM30-6-3-ALL 6 82 0.72 (0.028) 19.9 104 68.2 
R1 CMRM30-6-2-ALL 6 82 0.72 (0.028) 19.9 69.4 68.2 

 CMRM30-6-1-ALL 6 82 0.72 (0.028) 19.9 33.3 68.2 
CMRM30-6-3-ALL 6 82 0.87 (0.034) 16.4 86.2 56.3 R2 
CMRM30-6-1-ALL 6 82 0.87 (0.034) 16.4 27.6 56.3 

 CMRM30-6-3-ALL 6 81 1.18 (0.046) 12.1 63.6 41.4 
R3 CMRM30-6-2-ALL 6 81 1.18 (0.046) 12.1 42.4 41.4 

 CMRM30-6-1-ALL 6 81 1.18 (0.046) 12.1 20.3 41.4 
 CAN15-12-1-2NDS 12 71 0.88 (0.035) 8.11 27.3 26.9 

T2 CAN15-12-2-2NDS 12 71 0.88 (0.035) 8.11 56.8 26.9 
 CAN15-12-3-2NDS 12 71 0.88 (0.035) 8.11 85.2 26.9 
 CAN15-12-1-2NDS 12 70.5 1.13 (0.044) 6.32 21.2 20.8 

T3 CAN15-12-2-2NDS 12 70.5 1.13 (0.044) 6.32 66.4 20.8 
 CAN15-12-3-2NDS 12 70.5 1.13 (0.044) 6.32 44.2 20.8 
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Table B-2: Continued 

Test Series Specimen # of Webs θ (º) t, mm (in.) R/t N/t h/t 
 USD60-4-3-ALL 4 89 1.11 (0.044) 2.52 67.6 129 

U1 USD60-4-2-ALL 4 89 1.11 (0.044) 2.52 45.0 129 
 USD60-4-1-ALL 4 89 1.11 (0.044) 2.52 21.6 129 
 USD60-4-1-ALL 4 90 0.87 (0.034) 3.22 27.6 165 

U2 USD60-4-2-ALL 4 90 0.87 (0.034) 3.22 57.5 165 
 USD60-4-3-ALL 4 90 0.87 (0.034) 3.22 86.2 165 
 USD60-4-1-ALL 4 90 0.68 (0.027) 4.12 35.3 211 

U3 USD60-4-2-ALL 4 90 0.68 (0.027) 4.12 73.5 211 
 USD60-4-3-ALL 4 90 0.68 (0.027) 4.12 110 211 
 USD45-4-1-ALL 4 85.5 0.88 (0.035) 4.51 27.3 122 

U4 USD45-4-2-ALL 4 85.5 0.88 (0.035) 4.51 56.8 122 
 USD45-4-3-ALL 4 85.5 0.88 (0.035) 4.51 85.2 122 
 USD45-4-1-ALL 4 85.5 0.89 (0.035) 4.46 27.0 121 

U5 USD45-4-2-ALL 4 85.5 0.89 (0.035) 4.46 56.2 121 
 USD45-4-3-ALL 4 85.5 0.89 (0.035) 4.46 84.3 121 
 USD45-4-1-ALL 4 88 1.15 (0.045) 3.45 20.9 93.0 

U6 USD45-4-2-ALL 4 88 1.15 (0.045) 3.45 43.5 93.0 
 USD45-4-3-ALL 4 88 1.15 (0.045) 3.45 65.2 93.0 
 USD75-4-1-ALL 4 90 1.43 (0.056) 1.94 16.8 126 

U7 USD75-4-2-ALL 4 90 1.43 (0.056) 1.94 35.0 126 
 USD75-4-3-ALL 4 90 1.43 (0.056) 1.94 52.4 126 
 USD75-4-1-ALL 4 90 1.16 (0.046) 2.39 20.7 155 

U8 USD75-4-2-ALL 4 90 1.16 (0.046) 2.39 43.1 155 
 USD75-4-3-ALL 4 90 1.16 (0.046) 2.39 64.7 155 
 USD75-4-1-ALL 4 89 0.88 (0.035) 3.16 27.3 205 

U9 USD75-4-2-ALL 4 89 0.88 (0.035) 3.16 56.8 205 
 USD75-4-3-ALL 4 89 0.88 (0.035) 3.16 85.2 205 
 CAN15-12-2-2NDS 12 71.5 0.72 (0.028) 9.92 69.4 32.9 

T1 CAN15-12-3-2NDS 12 71.5 0.72 (0.028) 9.92 104 32.9 
 CAN15-12-1-2NDS 12 71.5 0.72 (0.028) 9.92 33.3 32.9 

EPIC20-8-1-ALL 8 109 0.73 (0.029) 3.81 32.9 58.0 E1 
EPIC20-8-2-ALL 8 109 0.73 (0.029) 3.81 68.5 58.0 
EPIC20-8-2-ALL 8 108 0.9 (0.035) 3.09 55.6 46.6 E2 
EPIC20-8-1-ALL 8 108 0.9 (0.035) 3.09 26.7 46.6 

E3 EPIC20-8-1-ALL 8 105 1.18 (0.046) 2.35 20.3 34.7 
EPIC40-6-1-ALL 6 104 1.13 (0.044) 1.41 21.2 77.6 E4 
EPIC40-6-2-ALL 6 104 1.13 (0.044) 1.41 44.2 77.6 

 EPIC40-6-1-ALL 6 107 0.88 (0.035) 1.80 27.3 101 
E5 EPIC40-6-2-ALL 6 107 0.88 (0.035) 1.80 56.8 101 

 EPIC40-6-3-ALL 6 107 0.88 (0.035) 1.80 85.2 101 
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Table B-3: Geometric Properties of Partially-Fastened Specimens 

Test Series Specimen # of Webs θ (º) t, mm (in.) R/t N/t h/t 
CAN30-4-1-ENDS 4 77 1.16 (0.046) 2.76 20.7 59.4 C1 
CAN30-4-2-ENDS 4 77 1.16 (0.046) 2.76 43.1 59.4 

 CAN30-4-1-ENDS 4 77 0.85 (0.033) 4.71 28.2 79.6 
C2 CAN30-4-2-ENDS 4 77 0.85 (0.033) 4.71 58.8 79.6 

 CAN30-4-3-ENDS 4 77 0.85 (0.033) 4.71 88.2 79.6 
 CAN30-4-1-ENDS 4 77 0.86 (0.034) 4.65 27.9 78.6 

C3 CAN30-4-2-ENDS 4 77 0.86 (0.034) 4.65 58.1 78.6 
 CAN30-4-3-ENDS 4 77 0.86 (0.034) 4.65 87.2 78.6 
 WHE45-4-1-ENDS 4 84 0.91 (0.036) 6.15 26.4 113 

W1 WHE45-4-2-ENDS 4 84 0.91 (0.036) 6.15 54.9 113 
 WHE45-4-3-ENDS 4 84 0.91 (0.036) 6.15 82.4 113 
 WHE45-4-1-ENDS 4 84 1.20 (0.047) 4.67 20.0 85.2 

W2 WHE45-4-2-ENDS 4 84 1.20 (0.047) 4.67 41.7 85.2 
 WHE45-4-3-ENDS 4 84 1.20 (0.047) 4.67 62.5 85.2 
 VIC30-4-1-ENDS 4 71 0.72 (0.028) 6.61 33.3 96.0 

V1 VIC30-4-2-ENDS 4 71 0.72 (0.028) 6.61 69.4 96.0 
 VIC30-4-3-ENDS 4 71 0.72 (0.028) 6.61 104 96.0 
 VIC30-4-2-ENDS 4 74 1.19 (0.047) 4.00 42.0 56.7 

V2 VIC30-4-1-ENDS 4 74 1.19 (0.047) 4.00 20.2 56.7 
 VIC30-4-3-ENDS 4 74 1.19 (0.047) 4.00 63.0 56.7 
 VIC30-8-1-ENDS 8 85 0.86 (0.034) 5.08 27.9 78.3 

V3 VIC30-8-3-ENDS 8 85 0.86 (0.034) 5.08 87.2 78.3 
 VIC30-8-2-ENDS 8 86 0.86 (0.034) 5.08 58.1 78.2 
 VIC30-8-1-ENDS 8 86 0.72 (0.028) 6.07 33.3 93.6 

V4 VIC30-8-2-ENDS 8 85 0.72 (0.028) 6.07 69.4 93.8 
 VIC30-8-3-ENDS 8 85 0.72 (0.028) 6.07 104 93.8 
 VIC30-8-3-ENDS 8 85 1.19 (0.047) 3.67 63.0 56.3 

V5 VIC30-8-2-ENDS 8 85 1.19 (0.047) 3.67 42.0 56.3 
 VIC30-8-1-ENDS 8 85 1.19 (0.047) 3.67 20.2 56.3 
 CMRM30-6-3-ENDS 6 82 0.72 (0.028) 19.9 104.2 68.2 

R1 CMRM30-6-2-ENDS 6 82 0.72 (0.028) 19.9 69.4 68.2 
 CMRM30-6-1-ENDS 6 82 0.72 (0.028) 19.9 33.3 68.2 
 CMRM30-6-3-ENDS 6 82 0.87 (0.034) 16.4 86.2 56.3 

R2 CMRM30-6-2-ENDS 6 82 0.87 (0.034) 16.4 57.5 56.3 
 CMRM30-6-1-ENDS 6 82 0.87 (0.034) 16.4 27.6 56.3 
 CMRM30-6-3-ENDS 6 81 1.18 (0.046) 12.1 63.6 41.4 

R3 CMRM30-6-2-ENDS 6 81 1.18 (0.046) 12.1 42.4 41.4 
 CMRM30-6-1-ENDS 6 81 1.18 (0.046) 12.1 20.3 41.4 
 CAN15-12-1-ENDS 12 71 0.88 (0.035) 8.11 27.3 26.9 
 CAN15-12-1-3RDS 12 71 0.88 (0.035) 8.11 27.3 26.9 

CAN15-12-2-ENDS 12 71 0.88 (0.035) 8.11 56.8 26.9 T2 CAN15-12-2-3RDS 12 71 0.88 (0.035) 8.11 56.8 26.9 
 CAN15-12-3-ENDS 12 71 0.88 (0.035) 8.11 85.2 26.9 
 CAN15-12-3-3RDS 12 71 0.88 (0.035) 8.11 85.2 26.9 

 



  56 

 

Table B-3: Continued 

Test Series Specimen # of Webs θ (º) t, mm (in.) R/t N/t h/t 
CAN15-12-1-ENDS 12 70.5 1.13 (0.044) 6.32 21.2 20.8 
CAN15-12-1-3RDS 12 70.5 1.13 (0.044) 6.32 21.2 20.8 
CAN15-12-2-ENDS 12 70.5 1.13 (0.044) 6.32 66.4 20.8 
CAN15-12-2-3RDS 12 70.5 1.13 (0.044) 6.32 66.4 20.8 
CAN15-12-3-ENDS 12 70.5 1.13 (0.044) 6.32 44.2 20.8 

T3 

CAN15-12-3-3RDS 12 70.5 1.13 (0.044) 6.32 44.2 20.8 
 USD60-4-3-ENDS 4 89 1.11 (0.044) 2.52 67.6 129 

U1 USD60-4-2-ENDS 4 89 1.11 (0.044) 2.52 45.0 129 
 USD60-4-1-ENDS 4 89 1.11 (0.044) 2.52 21.6 129 
 USD60-4-1-ENDS 4 90 0.87 (0.034) 3.22 27.6 165 

U2 USD60-4-2-ENDS 4 90 0.87 (0.034) 3.22 57.5 165 
 USD60-4-3-ENDS 4 90 0.87 (0.034) 3.22 86.2 165 
 USD60-4-1-ENDS 4 90 0.68 (0.027) 4.12 35.3 211 

U3 USD60-4-2-ENDS 4 90 0.68 (0.027) 4.12 73.5 211 
 USD60-4-3-ENDS 4 90 0.68 (0.027) 4.12 110 211 
 USD45-4-1-ENDS 4 85.5 0.88 (0.035) 4.51 27.3 122 

U4 USD45-4-2-ENDS 4 85.5 0.88 (0.035) 4.51 56.8 122 
 USD45-4-3-ENDS 4 85.5 0.88 (0.035) 4.51 85.2 122 
 USD45-4-1-ENDS 4 85.5 0.89 (0.035) 4.46 27.0 121 

U5 USD45-4-2-ENDS 4 85.5 0.89 (0.035) 4.46 56.2 121 
 USD45-4-3-ENDS 4 85.5 0.89 (0.035) 4.46 84.3 121 
 USD45-4-1-ENDS 4 88 1.15 (0.045) 3.45 20.9 93.0 

U6 USD45-4-2-ENDS 4 88 1.15 (0.045) 3.45 43.5 93.0 
 USD45-4-3-ENDS 4 88 1.15 (0.045) 3.45 65.2 93.0 
 USD75-4-1-ENDS 4 90 1.43 (0.056) 1.94 16.8 126 

U7 USD75-4-2-ENDS 4 90 1.43 (0.056) 1.94 35.0 126 
 USD75-4-3-ENDS 4 90 1.43 (0.056) 1.94 52.4 126 
 USD75-4-1-ENDS 4 90 1.16 (0.046) 2.39 20.7 155 

U8 USD75-4-2-ENDS 4 90 1.16 (0.046) 2.39 43.1 155 
 USD75-4-3-ENDS 4 90 1.16 (0.046) 2.39 64.7 155 
 USD75-4-1-ENDS 4 89 0.88 (0.035) 3.16 27.3 205 

U9 USD75-4-2-ENDS 4 89 0.88 (0.035) 3.16 56.8 205 
 USD75-4-3-ENDS 4 89 0.88 (0.035) 3.16 85.2 205 
 EPIC20-8-1-ENDS 8 109 0.73 (0.029) 3.81 32.9 58.0 

E1 EPIC20-8-2-ENDS 8 109 0.73 (0.029) 3.81 68.5 58.0 
 EPIC20-8-3-ENDS 8 109 0.73 (0.029) 3.81 103 58.0 
 EPIC20-8-3-ENDS 8 108 0.9 (0.035) 3.09 83.3 46.6 

E2 EPIC20-8-2-ENDS 8 108 0.9 (0.035) 3.09 55.6 46.6 
 EPIC20-8-1-ENDS 8 108 0.9 (0.035) 3.09 26.7 46.6 

EPIC20-8-1-ENDS 8 105 1.18 (0.046) 2.35 20.3 34.7 E3 
EPIC20-8-2-ENDS 8 105 1.18 (0.046) 2.35 42.4 34.7 

 EPIC40-6-1-ENDS 6 104 1.13 (0.044) 1.41 21.2 77.6 
E4 EPIC40-6-3-ENDS 6 104 1.13 (0.044) 1.41 66.4 77.6 

 EPIC40-6-2-ENDS 6 104 1.13 (0.044) 1.41 44.2 77.6 
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Table B-3: Continued 

Test Series Specimen # of Webs θ (º) t, mm (in.) R/t N/t h/t 
 EPIC40-6-1-ENDS 6 107 0.88 (0.035) 1.80 27.3 101 

E5 EPIC40-6-2-ENDS 6 107 0.88 (0.035) 1.80 56.8 101 
 EPIC40-6-3-ENDS 6 107 0.88 (0.035) 1.80 85.2 101 

 

Table B-4: Geometric Properties of Unfastened Data by Yu (1981) 

Specimen # of Webs θ (º) t, mm (in.) R/t N/t h/t Fy (ksi) 
EOF-1A 4 62.4 0.74 (0.029) 6.85 102 70.7 43.3 
EOF-1B 4 61.6 0.74 (0.029) 6.83 102 70.6 43.3 
EOF-2A 4 62.1 0.76 (0.030) 6.98 197 67.3 43.3 
EOF-2B 4 62.7 0.75 (0.030) 7.09 200 68.8 43.3 
EOF-3A 4 63.7 1.12 (0.044) 4.52 67.4 44.9 42.9 
EOF-3B 4 63.0 1.14 (0.045) 4.47 66.7 44.7 42.9 
EOF-4A 4 64.4 1.20 (0.047) 4.45 126 42.3 42.9 
EOF-4B 4 64.5 1.20 (0.047) 4.46 126 42.1 42.9 
EOF-5A 4 69.5 0.79 (0.031) 6.43 95.8 94.7 48.1 
EOF-5B 4 70.0 0.81 (0.032) 6.31 94.0 93.0 48.1 
EOF-6A 4 70.5 0.74 (0.029) 6.83 202 97.8 48.1 
EOF-6B 4 70.0 0.75 (0.029) 6.80 202 99.5 48.1 
EOF-7A 4 71.3 1.24 (0.049) 3.89 61.1 58.8 41.2 
EOF-7B 4 72.2 1.22 (0.048) 3.97 62.2 60.1 41.2 
EOF-8A 4 71.3 1.17 (0.046) 4.57 129 61.3 41.2 
EOF-8B 4 71.3 1.22 (0.048) 4.38 124 57.8 41.2 
EOF-19A 10 75.9 0.73 (0.029) 4.86 103 59.4 41.2 
EOF-19B 10 75.1 0.73 (0.029) 4.88 104 58.4 41.2 

 

Table B-5: Geometric Properties of Unfastened Data by Wu (1997) 

Specimen # of Webs θ (º) t, mm (in.) R/t N/t h/t Fy (ksi) 
t26h0.75R3/32*60 4 61.0 0.43 (0.017) 5.47 58.8 45.3 112 
t26h0.75R3/64*60 4 61.0 0.43 (0.017) 2.76 58.8 45.3 112 
t26h1.5R3/32*60 4 61.0 0.43 (0.017) 5.47 58.8 90.0 112 
t26h1.5R3/64*60 4 60.1 0.43 (0.017) 2.76 58.8 88.8 112 
t22h0.75R5/64*60 4 60.4 0.74 (0.029) 2.69 34.5 27.9 104 
t22h0.75R1/16*60 4 60.6 0.74 (0.029) 2.17 34.5 25.9 104 
t22h1.5R5/64*60 4 59.8 0.74 (0.029) 2.69 34.5 53.4 104 
t22h1.5R1/16*60 4 60.0 0.74 (0.029) 2.17 34.5 52.1 104 
t22h2R5/64*60 4 61.0 0.74 (0.029) 2.69 34.5 70.7 104 
t22h2R1/16*60 4 59.9 0.74 (0.029) 2.17 34.5 69.0 104 
t22h3R5/64*60 2 60.4 0.74 (0.029) 2.69 34.5 106 104 
t22h3R1/16*60 2 60.5 0.74 (0.029) 2.17 34.5 103 104 

t22h4.5R5/64*60 2 61.6 0.74 (0.029) 2.69 34.5 157 104 
t22h4.5R1/16*60 2 61.0 0.74 (0.029) 2.17 34.5 156 104 
t22h6R5/64*60 2 62.8 0.74 (0.029) 2.69 34.5 208 104 
t22h6R1/16*60 2 61.0 0.74 (0.029) 2.17 34.5 207 104 
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Table B-6: Geometric Properties of Unfastened Data by Avci and Easterling (2002) 

Specimen # of Webs θ (º) t, mm (in.) R/t N/t h/t Fy (ksi) 
U-P1-22-1 6 70.0 0.75 (0.030) 6.9 50.8 42.7 45.8 
U-P1-22-2 6 70.0 0.75 (0.030) 6.9 50.8 42.7 45.8 
U-P1-22-3 6 70.0 0.75 (0.030) 6.9 50.8 42.7 45.8 
U-P2-26-1 6 58.0 0.46 (0.018) 14.6 82.4 42.8 95.4 
U-P2-26-2 6 58.0 0.46 (0.018) 14.6 82.4 42.8 95.4 
U-P2-26-3 6 58.0 0.46 (0.018) 14.6 82.4 42.8 95.4 
U-P3-26-1 6 50.0 0.46 (0.018) 17.1 82.0 75.9 104 
U-P3-26-2 6 50.0 0.46 (0.018) 17.1 82.0 75.9 104 
U-P3-26-3 6 50.0 0.46 (0.018) 17.1 82.0 75.9 104 
U-P4-22-1 6 75.5 0.76 (0.030) 6.8 50.0 56.6 48.0 
U-P4-22-2 6 75.5 0.76 (0.030) 6.8 50.0 56.6 48.0 
U-P4-22-3 6 75.5 0.76 (0.030) 6.8 50.0 56.6 48.0 
U-P5-28-1 6 58.0 0.39 (0.015) 11.2 98.0 29.2 105 
U-P5-28-2 6 58.0 0.39 (0.015) 11.2 98.0 29.2 105 
U-P5-28-3 6 58.0 0.39 (0.015) 11.2 98.0 29.2 105 
U-C1-16-1 6 63.0 1.52 (0.060) 3.1 25.1 31.8 46.5 
U-C1-16-2 6 63.0 1.52 (0.060) 3.1 25.1 31.8 46.5 
U-C1-16-3 6 63.0 1.52 (0.060) 3.1 25.1 31.8 46.5 
U-C1-18-1 6 63.0 1.20 (0.047) 4.0 31.6 40.6 49.5 
U-C1-18-2 6 63.0 1.20 (0.047) 4.0 31.6 40.6 49.5 
U-C1-18-3 6 63.0 1.20 (0.047) 4.0 31.6 40.6 49.5 
U-C1-20-1 6 63.0 0.91 (0.036) 5.2 41.9 54.3 52.0 
U-C1-20-2 6 63.0 0.91 (0.036) 5.2 41.9 54.3 52.0 
U-C1-20-3 6 63.0 0.91 (0.036) 5.2 41.9 54.3 52.0 
U-C1-22-1 6 63.0 0.75 (0.030) 6.4 50.8 66.2 54.0 
U-C1-22-2 6 63.0 0.75 (0.030) 6.4 50.8 66.2 54.0 
U-C1-22-3 6 63.0 0.75 (0.030) 6.4 50.8 66.2 54.0 
U-C2-16-1 6 67.0 1.52 (0.060) 3.1 25.1 48.4 35.0 
U-C2-16-2 6 67.0 1.52 (0.060) 3.1 25.1 48.4 35.0 
U-C2-16-3 6 67.0 1.52 (0.060) 3.1 25.1 48.4 35.0 
U-C2-18-1 6 67.0 1.20 (0.047) 4.0 31.6 61.5 48.0 
U-C2-18-2 6 67.0 1.20 (0.047) 4.0 31.6 61.5 48.0 
U-C2-18-3 6 67.0 1.20 (0.047) 4.0 31.6 61.5 48.0 
U-C2-20-1 6 67.0 0.91 (0.036) 5.2 41.9 82.1 53.5 
U-C2-20-2 6 67.0 0.91 (0.036) 5.2 41.9 82.1 53.5 
U-C2-20-3 6 67.0 0.91 (0.036) 5.2 41.9 82.1 53.5 
U-C2-22-1 6 67.0 0.75 (0.030) 6.4 50.8 100.0 52.5 
U-C2-22-2 6 67.0 0.75 (0.030) 6.4 50.8 100.0 52.5 
U-C2-22-3 6 67.0 0.75 (0.030) 6.4 50.8 100.0 52.5 

 

Table B-7: Geometric Properties of Unfastened Data by Bhakta et al. (1992) 

Specimen # of Webs θ (º) t, mm (in.) R/t N/t h/t Fy (ksi) 
FD1 6 71 0.66 (0.026) 6.62 101 103 57.5 
FD2 6 71 0.66 (0.026) 6.62 101 103 57.5 
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Table B-8: Geometric Properties of Fastened Data by Avci and Easterling (2002) 

Specimen # of Webs θ (º) t, mm (in.) R/t N/t h/t Fy (ksi) 
R-P1-22-1 6 70.0 0.75 (0.030) 6.9 50.8 42.7 45.8 
R-P1-22-2 6 70.0 0.75 (0.030) 6.9 50.8 42.7 45.8 
R-P1-22-3 6 70.0 0.75 (0.030) 6.9 50.8 42.7 45.8 
R-P2-26-1 6 58.0 0.46 (0.018) 14.6 82.4 42.8 95.4 
R-P2-26-2 6 58.0 0.46 (0.018) 14.6 82.4 42.8 95.4 
R-P2-26-3 6 58.0 0.46 (0.018) 14.6 82.4 42.8 95.4 
R-P3-26-1 6 50.0 0.46 (0.018) 17.1 82.0 75.9 104 
R-P3-26-2 6 50.0 0.46 (0.018) 17.1 82.0 75.9 104 
R-P3-26-3 6 50.0 0.46 (0.018) 17.1 82.0 75.9 104 
R-P4-22-1 6 75.5 0.76 (0.030) 6.8 50.0 56.6 48.0 
R-P4-22-2 6 75.5 0.76 (0.030) 6.8 50.0 56.6 48.0 
R-P4-22-3 6 75.5 0.76 (0.030) 6.8 50.0 56.6 48.0 
R-P5-28-1 6 58.0 0.39 (0.015) 11.2 98.0 29.2 105 
R-P5-28-2 6 58.0 0.39 (0.015) 11.2 98.0 29.2 105 
R-P5-28-3 6 58.0 0.39 (0.015) 11.2 98.0 29.2 105 
R-C1-16-1 6 63.0 1.52 (0.060) 3.1 25.1 31.8 46.5 
R-C1-16-2 6 63.0 1.52 (0.060) 3.1 25.1 31.8 46.5 
R-C1-16-3 6 63.0 1.52 (0.060) 3.1 25.1 31.8 46.5 
R-C1-18-1 6 63.0 1.20 (0.047) 4.0 31.6 40.6 49.5 
R-C1-18-2 6 63.0 1.20 (0.047) 4.0 31.6 40.6 49.5 
R-C1-18-3 6 63.0 1.20 (0.047) 4.0 31.6 40.6 49.5 
R-C1-20-1 6 63.0 0.91 (0.036) 5.2 41.9 54.3 52.0 
R-C1-20-2 6 63.0 0.91 (0.036) 5.2 41.9 54.3 52.0 
R-C1-20-3 6 63.0 0.91 (0.036) 5.2 41.9 54.3 52.0 
R-C1-22-1 6 63.0 0.75 (0.030) 6.4 50.8 66.2 54.0 
R-C1-22-2 6 63.0 0.75 (0.030) 6.4 50.8 66.2 54.0 
R-C1-22-3 6 63.0 0.75 (0.030) 6.4 50.8 66.2 54.0 
R-C2-16-1 6 67.0 1.52 (0.060) 3.1 25.1 48.4 35.0 
R-C2-16-2 6 67.0 1.52 (0.060) 3.1 25.1 48.4 35.0 
R-C2-16-3 6 67.0 1.52 (0.060) 3.1 25.1 48.4 35.0 
R-C2-18-1 6 67.0 1.20 (0.047) 4.0 31.6 61.5 48.0 
R-C2-18-2 6 67.0 1.20 (0.047) 4.0 31.6 61.5 48.0 
R-C2-18-3 6 67.0 1.20 (0.047) 4.0 31.6 61.5 48.0 
R-C2-20-1 6 67.0 0.91 (0.036) 5.2 41.9 82.1 53.5 
R-C2-20-2 6 67.0 0.91 (0.036) 5.2 41.9 82.1 53.5 
R-C2-20-3 6 67.0 0.91 (0.036) 5.2 41.9 82.1 53.5 
R-C2-22-1 6 67.0 0.75 (0.030) 6.4 50.8 100.0 52.5 
R-C2-22-2 6 67.0 0.75 (0.030) 6.4 50.8 100.0 52.5 
R-C2-22-3 6 67.0 0.75 (0.030) 6.4 50.8 100.0 52.5 

 

Table B-9: Geometric Properties of Fastened Data by Bhakta et al. (1992) 

Specimen # of Webs θ (º) t, mm (in.) R/t N/t h/t Fy (ksi) 
FD3-F 6 71 0.66 (0.026) 6.62 101 103 57.5 
FD4-F 6 71 0.66 (0.026) 6.62 101 103 57.5 
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Appendix C 
Test Variables and Load Data 

5.7  
 Ptest

Rtest

 α L
 L

 

Table C-1: Load Data from Unfastened Specimens 

Test Series Specimen L, mm (in.) α Fy, MPa (ksi) Ptest, kN (kip) Rtest, kN (kip)
CAN30-4-1-NONE 521 (20.5) 0.41 340 (49.3) 12.8 (2.88) 7.50 (1.69) C1 
CAN30-4-2-NONE 508 (20.0) 0.43 340 (49.3) 12.6 (2.83) 7.24 (1.63) 
CAN30-4-1-NONE 521 (20.5) 0.41 310 (45.0) 5.80 (1.29) 3.37 (0.76) 
CAN30-4-2-NONE 521 (20.5) 0.41 310 (45.0) 5.40 (1.21) 3.16 (0.71) 
CAN30-4-2-NONE 521 (20.5) 0.41 310 (45.0) 6.60 (1.49) 3.88 (0.87) 

C2 

CAN30-4-3-NONE 533 (21.0) 0.43 310 (45.0) 7.60 (1.7) 4.33 (0.97) 
 CAN30-4-1-NONE 521 (20.5) 0.41 304 (44.1) 6.40 (1.43) 3.72 (0.84) 

C3 CAN30-4-2-NONE 533 (21.0) 0.40 304 (44.1) 5.70 (1.28) 3.38 (0.76) 
 CAN30-4-3-NONE 533 (21.0) 0.43 304 (44.1) 6.00 (1.34) 3.41 (0.77) 
 WHE45-4-1-NONE 622 (24.5) 0.43 663 (96.2) 9.40 (2.11) 5.36 (1.20) 

W1 WHE45-4-2-NONE 635 (25.0) 0.44 663 (96.2) 15.1 (3.40) 8.47 (1.90) 
 WHE45-4-3-NONE 648 (25.5) 0.45 663 (96.2) 14.3 (3.20) 7.82 (1.76) 
 WHE45-4-1-NONE 622 (24.5) 0.43 674 (97.8) 14.6 (3.28) 8.35 (1.88) 

W2 WHE45-4-2-NONE 635 (25.0) 0.44 674 (97.8) 27.8 (6.25) 15.5 (3.50) 
 WHE45-4-3-NONE 648 (25.5) 0.45 674 (97.8) 26.1 (5.86) 14.3 (3.22) 
 VIC30-4-1-NONE 572 (22.5) 0.40 321 (46.6) 2.07 (0.47) 1.24 (0.28) 

V1 VIC30-4-2-NONE 584 (23.0) 0.39 321 (46.6) 1.86 (0.42) 1.13 (0.25) 
 VIC30-4-3-NONE 584 (23.0) 0.39 321 (46.6) 2.38 (0.54) 1.45 (0.33) 
 VIC30-4-2-NONE 610 (24.0) 0.38 322 (46.7) 8.55 (1.92) 5.34 (1.20) 

V2 VIC30-4-1-NONE 610 (24.0) 0.38 322 (46.7) 8.26 (1.86) 5.16 (1.16) 
 VIC30-4-3-NONE 610 (24.0) 0.38 322 (46.7) 9.02 (2.03) 5.64 (1.27) 
 VIC30-8-1-NONE 610 (24.0) 0.38 328 (47.6) 17.2 (3.87) 10.8 (2.42) 

V3 VIC30-8-2-NONE 610 (24.0) 0.38 328 (47.6) 23.6 (5.31) 14.8 (3.32) 
 VIC30-8-3-NONE 610 (24.0) 0.38 328 (47.6) 27.7 (6.23) 17.3 (3.89) 
 VIC30-8-1-NONE 610 (24.0) 0.38 335 (48.6) 12.7 (2.86) 7.94 (1.78) 

V4 VIC30-8-2-NONE 610 (24.0) 0.38 335 (48.6) 14.6 (3.29) 9.14 (2.06) 
 VIC30-8-3-NONE 610 (24.0) 0.38 335 (48.6) 18.5 (4.15) 11.6 (2.60) 
 VIC30-8-3-NONE 610 (24.0) 0.38 311 (45.1) 53.7 (12.1) 33.5 (7.54) 

V5 VIC30-8-2-NONE 610 (24.0) 0.38 311 (45.1) 41.3 (9.29) 25.8 (5.81) 
 VIC30-8-1-NONE 610 (24.0) 0.38 311 (45.1) 31.4 (7.05) 19.6 (4.40) 
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Table C-1: Continued 

Test Series Specimen L, mm (in.) α Fy, MPa (ksi) Ptest, kN (kip) Rtest, kN (kip)
 CMRM30-6-3-NONE 597 (23.5) 0.38 310 (45.0) 15.0 (3.37) 9.26 (2.08) 

R1 CMRM30-6-2-NONE 597 (23.5) 0.38 310 (45.0) 12.9 (2.90) 7.97 (1.79) 
 CMRM30-6-1-NONE 597 (23.5) 0.38 310 (45.0) 10.5 (2.36) 6.48 (1.46) 
 CMRM30-6-3-NONE 597 (23.5) 0.38 327 (47.4) 20.2 (4.54) 12.5 (2.80) 

R2 CMRM30-6-2-NONE 597 (23.5) 0.38 327 (47.4) 20.0 (4.49) 12.3 (2.77) 
 CMRM30-6-1-NONE 597 (23.5) 0.38 327 (47.4) 14.3 (3.21) 8.80 (1.98) 
 CMRM30-6-3-NONE 597 (23.5) 0.38 341 (49.5) 35.5 (7.98) 21.9 (4.92) 

R3 CMRM30-6-2-NONE 597 (23.5) 0.38 341 (49.5) 33.1 (7.45) 20.4 (4.60) 
 CMRM30-6-1-NONE 597 (23.5) 0.38 341 (49.5) 24.5 (5.51) 15.1 (3.40) 

CAN15-12-1-NONE 521 (20.5) 0.39 349 (50.6) 31.5 (7.08) 19.2 (4.32) T2 
CAN15-12-3-NONE 508 (20.0) 0.43 349 (50.6) 44.1 (9.91) 25.3 (5.70) 

 CAN15-12-1-NONE 508 (20.0) 0.43 329 (47.7) 45.4 (10.2) 26.1 (5.86) 
T3 CAN15-12-2-NONE 508 (20.0) 0.43 329 (47.7) 70.6 (15.9) 40.6 (9.13) 

 CAN15-12-3-NONE 508 (20.0) 0.43 329 (47.7) 58.0 (13.0) 33.4 (7.50) 
 USD60-4-3-NONE 800 (31.5) 0.46 299 (43.4) 24.4 (5.49) 13.2 (2.96) 

U1 USD60-4-2-NONE 800 (31.5) 0.46 299 (43.4) 22.0 (4.95) 11.9 (2.67) 
 USD60-4-1-NONE 800 (31.5) 0.46 299 (43.4) 19.4 (4.35) 10.5 (2.35) 
 USD60-4-1-NONE 800 (31.5) 0.46 337 (48.9) 11.6 (2.62) 6.28 (1.41) 

U2 USD60-4-2-NONE 800 (31.5) 0.46 337 (48.9) 12.9 (2.89) 6.93 (1.56) 
 USD60-4-3-NONE 800 (31.5) 0.46 337 (48.9) 14.1 (3.17) 7.60 (1.71) 
 USD60-4-1-NONE 800 (31.5) 0.46 329 (47.7) 7.75 (1.74) 4.18 (0.940)

U3 USD60-4-2-NONE 800 (31.5) 0.46 329 (47.7) 8.33 (1.87) 4.50 (1.01) 
 USD60-4-3-NONE 800 (31.5) 0.46 329 (47.7) 7.98 (1.79) 4.31 (0.97) 
 USD45-4-1-NONE 762 (30.0) 0.42 319 (46.3) 11.9 (2.68) 6.94 (1.56) 

U4 USD45-4-2-NONE 762 (30.0) 0.42 319 (46.3) 13.5 (3.04) 7.90 (1.78) 
 USD45-4-3-NONE 762 (30.0) 0.42 319 (46.3) 12.9 (2.89) 7.51 (1.69) 
 USD45-4-1-NONE 762 (30.0) 0.42 347 (50.3) 11.4 (2.57) 6.67 (1.50) 

U5 USD45-4-2-NONE 762 (30.0) 0.42 347 (50.3) 13.5 (3.04) 7.88 (1.77) 
 USD45-4-3-NONE 762 (30.0) 0.42 347 (50.3) 11.0 (2.47) 6.42 (1.44) 
 USD45-4-1-NONE 762 (30.0) 0.42 300 (43.5) 18.6 (4.18) 10.9 (2.44) 

U6 USD45-4-2-NONE 762 (30.0) 0.42 300 (43.5) 22.6 (5.07) 13.2 (2.96) 
 USD45-4-3-NONE 762 (30.0) 0.42 300 (43.5) 25.7 (5.78) 15.0 (3.37) 
 USD75-4-1-NONE 851 (33.5) 0.47 306 (44.4) 30.3 (6.82) 16.1 (3.61) 

U7 USD75-4-2-NONE 851 (33.5) 0.47 306 (44.4) 33.0 (7.43) 17.5 (3.94) 
 USD75-4-3-NONE 851 (33.5) 0.47 306 (44.4) 35.0 (7.87) 18.5 (4.17) 
 USD75-4-1-NONE 851 (33.5) 0.47 344 (49.9) 23.4 (5.25) 12.4 (2.78) 

U8 USD75-4-2-NONE 851 (33.5) 0.47 344 (49.9) 25.1 (5.64) 13.3 (2.99) 
 USD75-4-3-NONE 851 (33.5) 0.47 344 (49.9) 26.9 (6.04) 14.2 (3.20) 
 USD75-4-1-NONE 851 (33.5) 0.47 326 (47.3) 11.4 (2.55) 6.01 (1.35) 

U9 USD75-4-2-NONE 851 (33.5) 0.47 326 (47.3) 11.8 (2.65) 6.24 (1.4) 
 USD75-4-3-NONE 851 (33.5) 0.47 326 (47.3) 13.7 (3.08) 7.27 (1.63) 
 CAN15-12-2-NONE 508 (20.0) 0.43 335 (48.6) 23.3 (5.25) 13.4 (3.02) 

T1 CAN15-12-3-NONE 508 (20.0) 0.43 335 (48.6) 28.1 (6.31) 16.1 (3.63) 
 CAN15-12-1-NONE 508 (20.0) 0.43 335 (48.6) 17.2 (3.86) 9.86 (2.22) 
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Table C-1: Continued 

Test Series Specimen L, mm (in.) α Fy, MPa (ksi) Ptest, kN (kip) Rtest, kN (kip)
EPIC20-8-1-NONE 521 (20.5) 0.41 345 (50.0) 15.1 (3.39) 8.82 (1.98) E1 
EPIC20-8-2-NONE 521 (20.5) 0.41 345 (50.0) 23.3 (5.23) 13.6 (3.06) 
EPIC20-8-2-NONE 521 (20.5) 0.41 326 (47.3) 30.7 (6.89) 18.0 (4.04) E2 
EPIC20-8-1-NONE 521 (20.5) 0.41 326 (47.3) 22.6 (5.08) 13.2 (2.98) 
EPIC20-8-1-NONE 521 (20.5) 0.41 314 (45.5) 41.1 (9.25) 24.1 (5.41) E3 
EPIC20-8-2-NONE 521 (20.5) 0.41 314 (45.5) 50.0 (11.2) 29.3 (6.58) 

 EPIC40-6-1-NONE 572 (22.5) 0.47 314 (45.5) 28.8 (6.48) 15.4 (3.46) 
E4 EPIC40-6-3-NONE 572 (22.5) 0.47 314 (45.5) 37.9 (8.53) 20.2 (4.55) 

 EPIC40-6-2-NONE 572 (22.5) 0.47 309 (44.8) 30.6 (6.88) 16.3 (3.67) 
 EPIC40-6-1-NONE 572 (22.5) 0.47 309 (44.8) 19.3 (4.34) 10.3 (2.32) 

E5 EPIC40-6-2-NONE 572 (22.5) 0.47 309 (44.8) 21.6 (4.86) 11.5 (2.59) 
 EPIC40-6-3-NONE 572 (22.5) 0.47 375 (54.4) 25.3 (5.69) 13.5 (3.03) 

 

Table C-2: Load Data from Fastened Specimens 

Test Series Specimen L, mm (in.) α Fy, MPa (ksi) Ptest, kN (kip) Rtest, kN (kip)
 CAN30-4-1-ALL 521 (20.5) 0.41 340 (49.3) 23.3 (5.25) 13.7 (3.07) 

C1 CAN30-4-2-ALL 521 (20.5) 0.43 340 (49.3) 28.2 (6.33) 16.1 (3.63) 
 CAN30-4-1-ALL 521 (20.5) 0.41 340 (49.3) 19.6 (4.40) 11.5 (2.58) 
 CAN30-4-1-ALL 521 (20.5) 0.41 310 (45.0) 10.0 (2.24) 5.84 (1.31) 

C2 CAN30-4-2-ALL 521 (20.5) 0.41 310 (45.0) 13.9 (3.12) 8.11 (1.82) 
 CAN30-4-3-ALL 533 (21.0) 0.43 310 (45.0) 16.7 (3.76) 9.55 (2.15) 
 CAN30-4-1-ALL 521 (20.5) 0.41 304 (44.1) 13.3 (2.99) 7.78 (1.75) 

C3 CAN30-4-2-ALL 533 (21.0) 0.40 304 (44.1) 12.9 (2.90) 7.68 (1.73) 
 CAN30-4-3-ALL 533 (21.0) 0.43 304 (44.1) 16.5 (3.71) 9.43 (2.12) 

WHE45-4-1-ALL 622 (24.5) 0.43 663 (96.2) 17.6 (3.96) 10.1 (2.26) 
WHE45-4-2-ALL 635 (25.0) 0.44 663 (96.2) 22.2 (4.98) 12.4 (2.79) 
WHE45-4-3-ALL 648 (25.5) 0.45 663 (96.2) 25.4 (5.71) 14.0 (3.14) 

W1 

WHE45-4-3-ALL 648 (25.5) 0.45 663 (96.2) 43.5 (9.77) 23.9 (5.36) 
 WHE45-4-1-ALL 622 (24.5) 0.43 674 (97.8) 35.4 (7.95) 20.2 (4.54) 

W2 WHE45-4-2-ALL 635 (25.0) 0.44 674 (97.8) 37.0 (8.31) 20.7 (4.65) 
 WHE45-4-3-ALL 648 (25.5) 0.45 674 (97.8) 44.1 (9.90) 24.2 (5.44) 

VIC30-4-1-ALL 572 (22.5) 0.40 321 (46.6) 7.70 (1.73) 4.62 (1.04) 
VIC30-4-1-ALL 572 (22.5) 0.40 321 (46.6) 7.39 (1.66) 4.43 (1.00) 
VIC30-4-2-ALL 584 (23.0) 0.39 321 (46.6) 9.86 (2.22) 6.00 (1.35) 

V1 

VIC30-4-3-ALL 584 (23.0) 0.39 321 (46.6) 12.8 (2.88) 7.79 (1.75) 
 VIC30-4-2-ALL 610 (24.0) 0.38 322 (46.7) 26.9 (6.05) 16.8 (3.78) 

V2 VIC30-4-1-ALL 610 (24.0) 0.38 322 (46.7) 19.9 (4.48) 12.5 (2.80) 
 VIC30-4-3-ALL 610 (24.0) 0.38 322 (46.7) 26.1 (5.87) 16.3 (3.67) 

V3 VIC30-8-1-ALL 610 (24.0) 0.38 328 (47.6) 20.0 (4.50) 12.5 (2.81) 
 VIC30-8-3-ALL 610 (24.0) 0.38 328 (47.6) 31.3 (7.03) 19.5 (4.39) 
 VIC30-8-2-ALL 610 (24.0) 0.38 328 (47.6) 25.9 (5.82) 16.2 (3.64) 
 VIC30-8-1-ALL 610 (24.0) 0.38 335 (48.6) 12.4 (2.79) 7.76 (1.74) 

V4 VIC30-8-2-ALL 610 (24.0) 0.38 335 (48.6) 17.5 (3.93) 10.9 (2.46) 
 VIC30-8-3-ALL 610 (24.0) 0.38 335 (48.6) 21.6 (4.85) 13.5 (3.03) 
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Table C-2: Continued 

Test Series Specimen L, mm (in.) α Fy, MPa (ksi) Ptest, kN (kip) Rtest, kN (kip)
VIC30-8-2-ALL 610 (24.0) 0.38 311 (45.1) 47.1 (10.6) 29.4 (6.62) V5 
VIC30-8-1-ALL 610 (24.0) 0.38 311 (45.1) 36.1 (8.12) 22.6 (5.08) 

 CMRM30-6-3-ALL 597 (23.5) 0.38 310 (45.0) 16.0 (3.60) 9.87 (2.22) 
R1 CMRM30-6-2-ALL 597 (23.5) 0.38 310 (45.0) 13.3 (2.99) 8.21 (1.84) 

 CMRM30-6-1-ALL 597 (23.5) 0.38 310 (45.0) 10.8 (2.42) 6.63 (1.49) 
CMRM30-6-3-ALL 597 (23.5) 0.38 327 (47.4) 24.8 (5.57) 15.3 (3.43) R2 
CMRM30-6-1-ALL 597 (23.5) 0.38 327 (47.4) 17.3 (3.89) 10.7 (2.40) 

 CMRM30-6-3-ALL 597 (23.5) 0.38 341 (49.5) 48.0 (10.8) 29.6 (6.66) 
R3 CMRM30-6-2-ALL 597 (23.5) 0.38 341 (49.5) 38.6 (8.69) 23.8 (5.36) 

 CMRM30-6-1-ALL 597 (23.5) 0.38 341 (49.5) 29.9 (6.72) 18.4 (4.15) 
 CAN15-12-1-2NDS 508 (20.0) 0.43 349 (50.6) 32.1 (7.21) 18.4 (4.15) 

T2 CAN15-12-2-2NDS 508 (20.0) 0.43 349 (50.6) 47.2 (10.6) 27.1 (6.10) 
 CAN15-12-3-2NDS 508 (20.0) 0.43 349 (50.6) 58.9 (13.2) 33.9 (7.61) 
 CAN15-12-1-2NDS 508 (20.0) 0.43 329 (47.7) 53.6 (12.0) 30.8 (6.92) 

T3 CAN15-12-2-2NDS 508 (20.0) 0.43 329 (47.7) 81.9 (18.4) 47.1 (10.6) 
 CAN15-12-3-2NDS 508 (20.0) 0.43 329 (47.7) 69.0 (15.5) 39.7 (8.92) 
 USD60-4-3-ALL 800 (31.5) 0.46 299 (43.4) 25.4 (5.71) 13.7 (3.08) 

U1 USD60-4-2-ALL 800 (31.5) 0.46 299 (43.4) 22.9 (5.15) 12.4 (2.78) 
 USD60-4-1-ALL 800 (31.5) 0.46 299 (43.4) 19.2 (4.32) 10.4 (2.33) 
 USD60-4-1-ALL 800 (31.5) 0.46 337 (48.9) 13.0 (2.91) 6.99 (1.57) 

U2 USD60-4-2-ALL 800 (31.5) 0.46 337 (48.9) 14.6 (3.29) 7.89 (1.77) 
 USD60-4-3-ALL 800 (31.5) 0.46 337 (48.9) 16.4 (3.69) 8.87 (1.99) 
 USD60-4-1-ALL 800 (31.5) 0.46 329 (47.7) 7.78 (1.75) 4.20 (0.944)

U3 USD60-4-2-ALL 800 (31.5) 0.46 329 (47.7) 8.95 (2.01) 4.83 (1.09) 
 USD60-4-3-ALL 800 (31.5) 0.46 329 (47.7) 9.93 (2.23) 5.36 (1.20) 
 USD45-4-1-ALL 762 (30.0) 0.42 319 (46.3) 11.3 (2.54) 6.58 (1.48) 

U4 USD45-4-2-ALL 762 (30.0) 0.42 319 (46.3) 13.1 (2.94) 7.64 (1.72) 
 USD45-4-3-ALL 762 (30.0) 0.42 319 (46.3) 14.8 (3.32) 8.62 (1.94) 
 USD45-4-1-ALL 762 (30.0) 0.42 347 (50.3) 12.3 (2.77) 7.19 (1.62) 

U5 USD45-4-2-ALL 762 (30.0) 0.42 347 (50.3) 13.9 (3.12) 8.09 (1.82) 
 USD45-4-3-ALL 762 (30.0) 0.42 347 (50.3) 17.2 (3.87) 10.0 (2.26) 
 USD45-4-1-ALL 762 (30.0) 0.42 300 (43.5) 19.9 (4.47) 11.6 (2.61) 

U6 USD45-4-2-ALL 762 (30.0) 0.42 300 (43.5) 23.5 (5.28) 13.7 (3.08) 
 USD45-4-3-ALL 762 (30.0) 0.42 300 (43.5) 26.1 (5.87) 15.2 (3.42) 
 USD75-4-1-ALL 851 (33.5) 0.47 306 (44.4) 30.7 (6.90) 16.3 (3.65) 

U7 USD75-4-2-ALL 851 (33.5) 0.47 306 (44.4) 36.6 (8.23) 19.4 (4.36) 
 USD75-4-3-ALL 851 (33.5) 0.47 306 (44.4) 40.9 (9.20) 21.7 (4.87) 
 USD75-4-1-ALL 851 (33.5) 0.47 344 (49.9) 24.6 (5.54) 13.1 (2.93) 

U8 USD75-4-2-ALL 851 (33.5) 0.47 344 (49.9) 28.1 (6.31) 14.9 (3.34) 
 USD75-4-3-ALL 851 (33.5) 0.47 344 (49.9) 28.3 (6.36) 15.0 (3.37) 
 USD75-4-1-ALL 851 (33.5) 0.47 326 (47.3) 12.7 (2.85) 6.72 (1.51) 

U9 USD75-4-2-ALL 851 (33.5) 0.47 326 (47.3) 12.4 (2.78) 6.55 (1.47) 
 USD75-4-3-ALL 851 (33.5) 0.47 326 (47.3) 12.5 (2.81) 6.62 (1.49) 
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Table C-2: Continued 

Test Series Specimen L, mm (in.) α Fy, MPa (ksi) Ptest, kN (kip) Rtest, kN (kip)
 CAN15-12-2-2NDS 508 (20.0) 0.43 335 (48.6) 28.3 (6.36) 16.3 (3.66) 

T1 CAN15-12-3-2NDS 508 (20.0) 0.43 335 (48.6) 34.9 (7.84) 20.1 (4.51) 
 CAN15-12-1-2NDS 508 (20.0) 0.43 335 (48.6) 20.2 (4.54) 11.6 (2.61) 

EPIC20-8-1-ALL 521 (20.5) 0.41 345 (50.0) 17.0 (3.83) 9.96 (2.24) E1 
EPIC20-8-2-ALL 521 (20.5) 0.41 345 (50.0) 23.3 (5.25) 13.7 (3.07) 
EPIC20-8-2-ALL 521 (20.5) 0.41 326 (47.3) 30.8 (6.93) 18.0 (4.06) E2 
EPIC20-8-1-ALL 521 (20.5) 0.41 326 (47.3) 23.1 (5.20) 13.5 (3.04) 

E3 EPIC20-8-1-ALL 521 (20.5) 0.41 314 (45.5) 41.1 (9.25) 24.1 (5.41) 
EPIC40-6-1-ALL 572 (22.5) 0.47 314 (45.5) 26.6 (5.97) 14.2 (3.18) E4 
EPIC40-6-2-ALL 572 (22.5) 0.47 309 (44.8) 32.6 (7.32) 17.4 (3.90) 

 EPIC40-6-1-ALL 572 (22.5) 0.47 309 (44.8) 18.2 (4.09) 9.71 (2.18) 
E5 EPIC40-6-2-ALL 572 (22.5) 0.47 375 (54.4) 21.6 (4.86) 11.5 (2.59) 

 EPIC40-6-3-ALL 572 (22.5) 0.47 375 (54.4) 26.8 (6.02) 14.3 (3.21) 
 

Table C-3: Load Data from Partially-Fastened Specimens 

Test Series Specimen L, mm (in.) α Fy, MPa (ksi) Ptest, kN (kip) Rtest, kN (kip)
C1 CAN30-4-1-ENDS 521 (20.5) 0.41 340 (49.3) 20.8 (4.68) 12.2 (2.74) 

 CAN30-4-2-ENDS 521 (20.5) 0.43 340 (49.3) 25.9 (5.83) 14.9 (3.34) 
 CAN30-4-1-ENDS 521 (20.5) 0.41 310 (45.0) 9.40 (2.12) 5.51 (1.24) 

C2 CAN30-4-2-ENDS 521 (20.5) 0.41 310 (45.0) 12.7 (2.85) 7.42 (1.67) 
 CAN30-4-3-ENDS 533 (21.0) 0.43 310 (45.0) 13.8 (3.1) 7.87 (1.77) 
 CAN30-4-1-ENDS 521 (20.5) 0.41 304 (44.1) 10.4 (2.35) 6.11 (1.37) 

C3 CAN30-4-2-ENDS 533 (21.0) 0.40 304 (44.1) 12.4 (2.79) 7.39 (1.66) 
 CAN30-4-3-ENDS 533 (21.0) 0.43 304 (44.1) 14.8 (3.32) 8.45 (1.90) 
 WHE45-4-1-ENDS 622 (24.5) 0.43 663 (96.2) 16.9 (3.79) 9.63 (2.16) 

W1 WHE45-4-2-ENDS 635 (25.0) 0.44 663 (96.2) 20.5 (4.61) 11.5 (2.58) 
 WHE45-4-3-ENDS 648 (25.5) 0.45 663 (96.2) 25.0 (5.62) 13.7 (3.09) 
 WHE45-4-1-ENDS 622 (24.5) 0.43 674 (97.8) 27.7 (6.23) 15.8 (3.56) 

W2 WHE45-4-2-ENDS 635 (25.0) 0.44 674 (97.8) 35.4 (7.96) 19.8 (4.46) 
 WHE45-4-3-ENDS 648 (25.5) 0.45 674 (97.8) 38.5 (8.66) 21.1 (4.75) 
 VIC30-4-1-ENDS 572 (22.5) 0.40 321 (46.6) 7.64 (1.72) 4.58 (1.03) 

V1 VIC30-4-2-ENDS 584 (23.0) 0.39 321 (46.6) 9.80 (2.20) 5.97 (1.34) 
 VIC30-4-3-ENDS 584 (23.0) 0.39 321 (46.6) 11.9 (2.68) 7.25 (1.63) 
 VIC30-4-2-ENDS 610 (24.0) 0.38 322 (46.7) 24.1 (5.43) 15.1 (3.39) 

V2 VIC30-4-1-ENDS 610 (24.0) 0.38 322 (46.7) 17.4 (3.92) 10.9 (2.45) 
 VIC30-4-3-ENDS 610 (24.0) 0.38 322 (46.7) 29.5 (6.64) 18.5 (4.15) 
 VIC30-8-1-ENDS 610 (24.0) 0.38 328 (47.6) 18.3 (4.11) 11.4 (2.57) 

V3 VIC30-8-3-ENDS 610 (24.0) 0.38 328 (47.6) 30.9 (6.94) 19.3 (4.34) 
 VIC30-8-2-ENDS 610 (24.0) 0.38 328 (47.6) 25.5 (5.74) 16.0 (3.59) 
 VIC30-8-1-ENDS 610 (24.0) 0.38 335 (48.6) 13.6 (3.06) 8.51 (1.91) 

V4 VIC30-8-2-ENDS 610 (24.0) 0.38 335 (48.6) 16.7 (3.75) 10.4 (2.35) 
 VIC30-8-3-ENDS 610 (24.0) 0.38 335 (48.6) 20.6 (4.63) 12.9 (2.89) 
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Table C-3: Continued 

Test Series Specimen L, mm (in.) α Fy, MPa (ksi) Ptest, kN (kip) Rtest, kN (kip)
 VIC30-8-3-ENDS 610 (24.0) 0.38 311 (45.1) 56.8 (12.8) 35.5 (7.98) 

V5 VIC30-8-2-ENDS 610 (24.0) 0.38 311 (45.1) 47.2 (10.6) 29.5 (6.63) 
 VIC30-8-1-ENDS 610 (24.0) 0.38 311 (45.1) 33.5 (7.52) 20.9 (4.70) 
 CMRM30-6-3-ENDS 597 (23.5) 0.38 310 (45.0) 16.0 (3.59) 9.86 (2.22) 

R1 CMRM30-6-2-ENDS 597 (23.5) 0.38 310 (45.0) 12.8 (2.88) 7.92 (1.78) 
 CMRM30-6-1-ENDS 597 (23.5) 0.38 310 (45.0) 10.6 (2.39) 6.57 (1.48) 
 CMRM30-6-3-ENDS 597 (23.5) 0.38 327 (47.4) 24.8 (5.58) 15.3 (3.44) 

R2 CMRM30-6-2-ENDS 597 (23.5) 0.38 327 (47.4) 20.9 (4.70) 12.9 (2.90) 
 CMRM30-6-1-ENDS 597 (23.5) 0.38 327 (47.4) 16.3 (3.67) 10.1 (2.27) 
 CMRM30-6-3-ENDS 597 (23.5) 0.38 341 (49.5) 47.4 (10.6) 29.2 (6.57) 

R3 CMRM30-6-2-ENDS 597 (23.5) 0.38 341 (49.5) 38.7 (8.70) 23.9 (5.37) 
 CMRM30-6-1-ENDS 597 (23.5) 0.38 341 (49.5) 29.5 (6.63) 18.2 (4.09) 

CAN15-12-1-ENDS 508 (20.0) 0.43 349 (50.6) 34.1 (7.66) 19.6 (4.41) 
CAN15-12-1-3RDS 508 (20.0) 0.43 349 (50.6) 32.8 (7.36) 18.8 (4.23) 
CAN15-12-2-ENDS 508 (20.0) 0.43 349 (50.6) 38.4 (8.63) 22.1 (4.96) 
CAN15-12-2-3RDS 508 (20.0) 0.43 349 (50.6) 41.5 (9.33) 23.9 (5.36) 
CAN15-12-3-ENDS 508 (20.0) 0.43 349 (50.6) 51.5 (11.6) 29.6 (6.66) 

T2 

CAN15-12-3-3RDS 508 (20.0) 0.43 349 (50.6) 53.9 (12.1) 31.0 (6.97) 
CAN15-12-1-ENDS 508 (20.0) 0.43 329 (47.7) 53.3 (12.0) 30.7 (6.89) 
CAN15-12-1-3RDS 508 (20.0) 0.43 329 (47.7) 45.4 (10.2) 26.1 (5.87) 
CAN15-12-2-ENDS 508 (20.0) 0.43 329 (47.7) 73.3 (16.5) 42.2 (9.48) 
CAN15-12-2-3RDS 508 (20.0) 0.43 329 (47.7) 78.1 (17.6) 44.9 (10.1) 
CAN15-12-3-ENDS 508 (20.0) 0.43 329 (47.7) 62.2 (14.0) 35.8 (8.04) 

T3 

CAN15-12-3-3RDS 508 (20.0) 0.43 329 (47.7) 67.3 (15.1) 38.7 (8.70) 
 USD60-4-3-ENDS 800 (31.5) 0.46 299 (43.4) 22.7 (5.10) 12.3 (2.75) 

U1 USD60-4-2-ENDS 800 (31.5) 0.46 299 (43.4) 22.7 (5.10) 12.3 (2.75) 
 USD60-4-1-ENDS 800 (31.5) 0.46 299 (43.4) 18.9 (4.24) 10.2 (2.29) 
 USD60-4-1-ENDS 800 (31.5) 0.46 337 (48.9) 12.7 (2.86) 6.86 (1.54) 

U2 USD60-4-2-ENDS 800 (31.5) 0.46 337 (48.9) 14.7 (3.30) 7.92 (1.78) 
 USD60-4-3-ENDS 800 (31.5) 0.46 337 (48.9) 15.5 (3.49) 8.39 (1.89) 
 USD60-4-1-ENDS 800 (31.5) 0.46 329 (47.7) 7.96 (1.79) 4.30 (0.966)

U3 USD60-4-2-ENDS 800 (31.5) 0.46 329 (47.7) 8.83 (1.99) 4.77 (1.07) 
 USD60-4-3-ENDS 800 (31.5) 0.46 329 (47.7) 9.46 (2.13) 5.11 (1.15) 
 USD45-4-1-ENDS 762 (30.0) 0.42 319 (46.3) 11.0 (2.48) 6.43 (1.45) 

U4 USD45-4-2-ENDS 762 (30.0) 0.42 319 (46.3) 12.7 (2.86) 7.41 (1.67) 
 USD45-4-3-ENDS 762 (30.0) 0.42 319 (46.3) 13.5 (3.04) 7.88 (1.77) 
 USD45-4-1-ENDS 762 (30.0) 0.42 347 (50.3) 11.1 (2.50) 6.49 (1.46) 

U5 USD45-4-2-ENDS 762 (30.0) 0.42 347 (50.3) 13.9 (3.12) 8.10 (1.82) 
 USD45-4-3-ENDS 762 (30.0) 0.42 347 (50.3) 15.7 (3.52) 9.14 (2.05) 
 USD45-4-1-ENDS 762 (30.0) 0.42 300 (43.5) 18.8 (4.23) 11.0 (2.47) 

U6 USD45-4-2-ENDS 762 (30.0) 0.42 300 (43.5) 23.6 (5.31) 13.8 (3.10) 
 USD45-4-3-ENDS 762 (30.0) 0.42 300 (43.5) 26.2 (5.89) 15.3 (3.43) 
 USD75-4-1-ENDS 851 (33.5) 0.47 306 (44.4) 28.6 (6.44) 15.2 (3.41) 

U7 USD75-4-2-ENDS 851 (33.5) 0.47 306 (44.4) 34.7 (7.79) 18.4 (4.13) 
 USD75-4-3-ENDS 851 (33.5) 0.47 306 (44.4) 38.8 (8.73) 20.6 (4.63) 
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Table C-3: Continued 

Test Series Specimen L, mm (in.) α Fy, MPa (ksi) Ptest, kN (kip) Rtest, kN (kip)
 USD75-4-1-ENDS 851 (33.5) 0.47 344 (49.9) 24.4 (5.49) 12.9 (2.91) 

U8 USD75-4-2-ENDS 851 (33.5) 0.47 344 (49.9) 26.2 (5.88) 13.9 (3.11) 
 USD75-4-3-ENDS 851 (33.5) 0.47 344 (49.9) 26.2 (5.89) 13.9 (3.12) 
 USD75-4-1-ENDS 851 (33.5) 0.47 326 (47.3) 12.5 (2.81) 6.61 (1.49) 

U9 USD75-4-2-ENDS 851 (33.5) 0.47 326 (47.3) 13.8 (3.10) 7.30 (1.64) 
 USD75-4-3-ENDS 851 (33.5) 0.47 326 (47.3) 14.6 (3.28) 7.72 (1.74) 
 EPIC20-8-1-ENDS 521 (20.5) 0.41 345 (50.0) 17.6 (3.95) 10.3 (2.31) 

E1 EPIC20-8-2-ENDS 521 (20.5) 0.41 345 (50.0) 24.6 (5.52) 14.4 (3.23) 
 EPIC20-8-3-ENDS 521 (20.5) 0.41 345 (50.0) 25.9 (5.81) 15.1 (3.40) 
 EPIC20-8-3-ENDS 521 (20.5) 0.41 326 (47.3) 32.8 (7.36) 19.2 (4.31) 

E2 EPIC20-8-2-ENDS 521 (20.5) 0.41 326 (47.3) 32.7 (7.36) 19.2 (4.31) 
 EPIC20-8-1-ENDS 521 (20.5) 0.41 326 (47.3) 23.1 (5.19) 13.5 (3.04) 

EPIC20-8-1-ENDS 521 (20.5) 0.41 314 (45.5) 41.4 (9.31) 24.2 (5.45) E3 
EPIC20-8-2-ENDS 521 (20.5) 0.41 314 (45.5) 50.0 (11.2) 29.3 (6.58) 

 EPIC40-6-1-ENDS 572 (22.5) 0.47 314 (45.5) 30.2 (6.79) 16.1 (3.62) 
E4 EPIC40-6-3-ENDS 572 (22.5) 0.47 314 (45.5) 40.1 (9.01) 21.4 (4.81) 

 EPIC40-6-2-ENDS 572 (22.5) 0.47 309 (44.8) 33.8 (7.59) 18.0 (4.05) 
 EPIC40-6-1-ENDS 572 (22.5) 0.47 309 (44.8) 18.3 (4.10) 9.73 (2.19) 

E5 EPIC40-6-2-ENDS 572 (22.5) 0.47 309 (44.8) 22.7 (5.10) 12.1 (2.72) 
 EPIC40-6-3-ENDS 572 (22.5) 0.47 375 (54.4) 23.4 (5.26) 12.5 (2.81) 
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Appendix D 
Nominal Resistance of Specimens 

5.8  

Table D-1: Nominal Strength of Unfastened Specimens 

Series ID Specimen # of Webs Rtest / web 
(kN) Rcalc

1 (kN) Rtest/Rcalc
1 Rcalc

2 (kN) Rtest/Rcalc
2

CAN30-4-1-NONE 4 1.88 2.79 0.67 2.27 0.83 C1 
CAN30-4-2-NONE 4 1.81 3.74 0.48 2.84 0.64 
CAN30-4-1-NONE 4 0.84 1.30 0.65 1.14 0.74 
CAN30-4-2-NONE 4 0.79 1.76 0.45 1.45 0.55 
CAN30-4-2-NONE 4 0.97 1.76 0.55 1.45 0.67 

C2 

CAN30-4-3-NONE 4 1.08 2.09 0.52 1.67 0.65 
 CAN30-4-1-NONE 4 0.93 1.31 0.71 1.14 0.81 

C3 CAN30-4-2-NONE 4 0.85 1.77 0.48 1.45 0.58 
 CAN30-4-3-NONE 4 0.85 2.10 0.41 1.67 0.51 
 WHE45-4-1-NONE 4 1.34 2.51 0.53 2.58 0.52 

W1 WHE45-4-2-NONE 4 1.34 3.38 0.40 3.27 0.41 
 WHE45-4-3-NONE 4 3.89 4.02 0.97 3.77 1.03 
 WHE45-4-1-NONE 4 2.87 4.87 0.59 4.51 0.64 

W2 WHE45-4-2-NONE 4 5.29 6.51 0.81 5.63 0.94 
 WHE45-4-3-NONE 4 3.43 7.71 0.45 6.46 0.53 
 VIC30-4-1-NONE 4 0.31 0.87 0.36 0.82 0.38 

V1 VIC30-4-2-NONE 4 0.28 1.18 0.24 1.05 0.27 
 VIC30-4-3-NONE 4 0.36 1.41 0.26 1.22 0.30 
 VIC30-4-2-NONE 4 1.34 3.58 0.37 2.75 0.49 

V2 VIC30-4-1-NONE 4 1.29 2.68 0.48 2.19 0.59 
 VIC30-4-3-NONE 4 1.41 4.24 0.33 3.15 0.45 
 VIC30-8-1-NONE 8 1.35 1.43 0.94 1.26 1.07 

V3 VIC30-8-2-NONE 8 1.85 1.93 0.96 1.59 1.16 
 VIC30-8-3-NONE 8 2.16 2.30 0.94 1.84 1.17 
 VIC30-8-1-NONE 8 0.99 0.98 1.01 0.91 1.09 

V4 VIC30-8-2-NONE 8 1.14 1.33 0.86 1.17 0.98 
 VIC30-8-3-NONE 8 1.44 1.59 0.91 1.35 1.07 
 VIC30-8-3-NONE 8 4.19 4.29 0.98 3.17 1.32 

V5 VIC30-8-2-NONE 8 3.23 3.62 0.89 2.76 1.17 
 VIC30-8-1-NONE 8 2.45 2.71 0.90 2.21 1.11 
 CMRM30-6-3-NONE 6 1.54 1.37 1.13 1.19 1.29 

R1 CMRM30-6-2-NONE 6 1.33 1.15 1.16 1.03 1.29 
 CMRM30-6-1-NONE 6 1.08 0.85 1.28 0.81 1.34 
 CMRM30-6-3-NONE 6 2.08 2.19 0.95 1.80 1.16 

R2 CMRM30-6-2-NONE 6 2.05 1.84 1.12 1.56 1.32 
 CMRM30-6-1-NONE 6 1.47 1.36 1.08 1.23 1.20 
 CMRM30-6-3-NONE 6 3.65 4.32 0.85 3.29 1.11 

R3 CMRM30-6-2-NONE 6 3.41 3.64 0.93 2.87 1.19 
 CMRM30-6-1-NONE 6 2.52 2.73 0.92 2.29 1.10 
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Table D-1: Continued 

Series ID Specimen # of Webs Rtest / web 
(kN) Rcalc

1 (kN) Rtest/Rcalc
1 Rcalc

2 (kN) Rtest/Rcalc
2

CAN15-12-1-NONE 12 1.60 1.97 0.81 1.46 1.10 T2 
CAN15-12-3-NONE 12 2.11 3.16 0.67 2.14 0.99 

 CAN15-12-1-NONE 12 2.17 3.00 0.72 2.18 1.00 
T3 CAN15-12-2-NONE 12 3.38 4.76 0.71 3.13 1.08 

 CAN15-12-3-NONE 12 2.78 4.02 0.69 2.73 1.02 
 USD60-4-3-NONE 4 3.29 2.44 1.35 2.39 1.38 

U1 USD60-4-2-NONE 4 2.97 2.06 1.44 2.08 1.43 
 USD60-4-1-NONE 4 2.61 1.54 1.70 1.66 1.58 
 USD60-4-1-NONE 4 1.57 0.90 1.75 1.15 1.37 

U2 USD60-4-2-NONE 4 1.73 1.21 1.43 1.45 1.19 
 USD60-4-3-NONE 4 1.90 1.44 1.32 1.68 1.13 
 USD60-4-1-NONE 4 1.05 0.40 2.65 0.68 1.54 

U3 USD60-4-2-NONE 4 1.12 0.54 2.09 0.87 1.30 
 USD60-4-3-NONE 4 1.08 0.64 1.68 1.01 1.07 
 USD45-4-1-NONE 4 1.74 1.12 1.55 1.17 1.48 

U4 USD45-4-2-NONE 4 1.97 1.51 1.31 1.49 1.33 
 USD45-4-3-NONE 4 1.88 1.79 1.05 1.72 1.09 
 USD45-4-1-NONE 4 1.67 1.25 1.33 1.31 1.28 

U5 USD45-4-2-NONE 4 1.97 1.69 1.17 1.65 1.19 
 USD45-4-3-NONE 4 1.60 2.01 0.80 1.91 0.84 
 USD45-4-1-NONE 4 2.71 2.00 1.36 1.87 1.45 

U6 USD45-4-2-NONE 4 3.29 2.67 1.23 2.34 1.41 
 USD45-4-3-NONE 4 3.75 3.16 1.19 2.69 1.40 

U7 USD75-4-1-NONE 4 4.02 2.48 1.62 2.66 1.51 
 USD75-4-2-NONE 4 4.38 3.29 1.33 3.30 1.33 
 USD75-4-3-NONE 4 4.64 3.88 1.19 3.77 1.23 
 USD75-4-1-NONE 4 3.09 1.61 1.93 1.97 1.57 

U8 USD75-4-2-NONE 4 3.33 2.15 1.55 2.46 1.35 
 USD75-4-3-NONE 4 3.56 2.54 1.40 2.83 1.26 
 USD75-4-1-NONE 4 1.50 0.64 2.33 1.06 1.42 

U9 USD75-4-2-NONE 4 1.56 0.87 1.79 1.34 1.16 
 USD75-4-3-NONE 4 1.82 1.03 1.76 1.55 1.17 
 CAN15-12-2-NONE 12 1.12 1.73 0.65 1.24 0.90 

T1 CAN15-12-3-NONE 12 1.35 2.06 0.65 1.44 0.94 
 CAN15-12-1-NONE 12 0.82 1.28 0.64 0.97 0.85 

EPIC20-8-1-NONE 8 1.10 1.28 0.86 1.01 1.09 E1 
EPIC20-8-2-NONE 8 1.70 1.74 0.98 1.29 1.32 
EPIC20-8-2-NONE 8 2.24 2.52 0.89 1.79 1.25 E2 
EPIC20-8-1-NONE 8 1.65 1.87 0.89 1.42 1.17 
EPIC20-8-1-NONE 8 3.01 3.12 0.96 2.29 1.31 E3 
EPIC20-8-2-NONE 8 3.66 4.18 0.88 2.87 1.28 

 EPIC40-6-1-NONE 6 2.56 2.26 1.13 1.92 1.33 
E4 EPIC40-6-3-NONE 6 3.37 3.58 0.94 2.77 1.22 

 EPIC40-6-2-NONE 6 2.72 3.03 0.90 2.41 1.13 
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Table D-1: Continued 

Series ID Specimen # of Webs Rtest / web 
(kN) Rcalc

1 (kN) Rtest/Rcalc
1 Rcalc

2 (kN) Rtest/Rcalc
2

 EPIC40-6-1-NONE 6 1.72 1.54 1.11 1.42 1.21 
E5 EPIC40-6-2-NONE 6 1.92 2.08 0.92 1.80 1.07 

 EPIC40-6-3-NONE 6 2.25 2.47 0.91 2.08 1.08 
1Using coefficients from NAS (2001a); 2Using proposed coefficients 

Table D-2: Nominal Strength of Fastened Specimens 

Series ID Specimen # of Webs Rtest / web 
(kN) Rcalc

1 (kN) Rtest/Rcalc
1 Rcalc

2 (kN) Rtest/Rcalc
2

 CAN30-4-1-ALL 4 3.42 2.79 1.22 2.87 1.19 
C1 CAN30-4-2-ALL 4 4.04 3.74 1.08 3.55 1.14 

 CAN30-4-1-ALL 4 2.87 2.79 1.03 2.87 1.00 
 CAN30-4-1-ALL 4 1.46 1.30 1.12 1.44 1.01 

C2 CAN30-4-2-ALL 4 2.03 1.76 1.16 1.81 1.12 
 CAN30-4-3-ALL 4 2.39 2.09 1.14 2.07 1.15 
 CAN30-4-1-ALL 4 1.94 1.31 1.49 1.45 1.34 

C3 CAN30-4-2-ALL 4 1.92 1.77 1.09 1.81 1.06 
 CAN30-4-3-ALL 4 2.36 2.10 1.12 2.08 1.13 
 WHE45-4-1-ALL 4 5.05 2.51 2.01 3.30 1.53 

WHE45-4-2-ALL 4 2.52 3.38 0.74 4.12 0.61 W1 WHE45-4-3-ALL 4 5.17 4.02 1.29 4.73 1.09 
 WHE45-4-3-ALL 4 2.12 4.02 0.53 4.73 0.45 
 WHE45-4-1-ALL 4 3.58 4.87 0.73 5.75 0.62 

W2 WHE45-4-2-ALL 4 1.96 6.51 0.30 7.09 0.28 
 WHE45-4-3-ALL 4 5.96 7.71 0.77 8.08 0.74 

VIC30-4-1-ALL 4 1.16 0.87 1.33 1.04 1.11 
VIC30-4-1-ALL 4 1.11 0.87 1.27 1.04 1.06 
VIC30-4-2-ALL 4 1.50 1.18 1.27 1.31 1.14 

V1 

VIC30-4-3-ALL 4 1.95 1.41 1.38 1.51 1.29 
 VIC30-4-2-ALL 4 4.20 3.58 1.17 3.43 1.23 

V2 VIC30-4-1-ALL 4 3.11 2.68 1.16 2.78 1.12 
 VIC30-4-3-ALL 4 4.08 4.24 0.96 3.90 1.05 
 VIC30-8-1-ALL 8 1.56 1.43 1.09 1.59 0.98 

V3 VIC30-8-3-ALL 8 2.44 2.30 1.06 2.28 1.07 
 VIC30-8-2-ALL 8 2.02 1.94 1.05 1.99 1.02 
 VIC30-8-1-ALL 8 0.97 0.98 0.99 1.16 0.84 

V4 VIC30-8-2-ALL 8 1.37 1.33 1.03 1.46 0.94 
 VIC30-8-3-ALL 8 1.69 1.59 1.06 1.68 1.00 

VIC30-8-2-ALL 8 3.68 3.62 1.02 3.45 1.07 V5 
VIC30-8-1-ALL 8 2.82 2.71 1.04 2.79 1.01 

 CMRM30-6-3-ALL 6 1.65 1.37 1.21 1.47 1.12 
R1 CMRM30-6-2-ALL 6 1.37 1.15 1.19 1.28 1.07 

 CMRM30-6-1-ALL 6 1.11 0.85 1.31 1.01 1.09 
CMRM30-6-3-ALL 6 2.55 2.19 1.16 2.22 1.15 R2 
CMRM30-6-1-ALL 6 1.78 1.36 1.31 1.54 1.15 
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Table D-2: Continued 

Series ID Specimen # of Webs Rtest / web 
(kN) Rcalc

1 (kN) Rtest/Rcalc
1 Rcalc

2 (kN) Rtest/Rcalc
2

 CMRM30-6-3-ALL 6 4.94 4.32 1.14 4.06 1.22 
R3 CMRM30-6-2-ALL 6 3.97 3.64 1.09 3.56 1.12 

 CMRM30-6-1-ALL 6 3.07 2.73 1.13 2.88 1.07 
 CAN15-12-1-2NDS 12 1.54 1.97 0.78 1.82 0.85 

T2 CAN15-12-2-2NDS 12 2.26 2.66 0.85 2.27 0.99 
 CAN15-12-3-2NDS 12 2.82 3.16 0.89 2.61 1.08 
 CAN15-12-1-2NDS 12 2.57 3.00 0.85 2.72 0.95 

T3 CAN15-12-2-2NDS 12 3.92 4.76 0.82 3.83 1.02 
 CAN15-12-3-2NDS 12 3.31 4.02 0.82 3.36 0.98 
 USD60-4-3-ALL 4 3.43 2.44 1.40 3.02 1.14 

U1 USD60-4-2-ALL 4 3.09 2.06 1.50 2.65 1.17 
 USD60-4-1-ALL 4 2.59 1.54 1.69 2.14 1.21 
 USD60-4-1-ALL 4 1.75 0.90 1.94 1.49 1.18 

U2 USD60-4-2-ALL 4 1.97 1.21 1.63 1.86 1.06 
 USD60-4-3-ALL 4 2.22 1.44 1.54 2.14 1.04 
 USD60-4-1-ALL 4 1.05 0.40 2.66 0.88 1.19 

U3 USD60-4-2-ALL 4 1.21 0.54 2.25 1.12 1.08 
 USD60-4-3-ALL 4 1.34 0.64 2.09 1.29 1.04 
 USD45-4-1-ALL 4 1.65 1.12 1.47 1.50 1.09 

U4 USD45-4-2-ALL 4 1.91 1.51 1.27 1.88 1.01 
 USD45-4-3-ALL 4 2.16 1.79 1.20 2.16 1.00 
 USD45-4-1-ALL 4 1.80 1.25 1.43 1.67 1.07 

U5 USD45-4-2-ALL 4 2.02 1.69 1.20 2.09 0.97 
 USD45-4-3-ALL 4 2.51 2.01 1.25 2.40 1.05 
 USD45-4-1-ALL 4 2.90 2.00 1.45 2.39 1.21 

U6 USD45-4-2-ALL 4 3.43 2.67 1.28 2.95 1.16 
 USD45-4-3-ALL 4 3.81 3.16 1.20 3.36 1.13 
 USD75-4-1-ALL 4 4.06 2.48 1.64 3.44 1.18 

U7 USD75-4-2-ALL 4 4.85 3.29 1.47 4.22 1.15 
 USD75-4-3-ALL 4 5.42 3.88 1.40 4.78 1.13 
 USD75-4-1-ALL 4 3.26 1.61 2.03 2.56 1.28 

U8 USD75-4-2-ALL 4 3.72 2.15 1.73 3.16 1.18 
 USD75-4-3-ALL 4 3.75 2.54 1.47 3.60 1.04 
 USD75-4-1-ALL 4 1.68 0.64 2.61 1.39 1.21 

U9 USD75-4-2-ALL 4 1.64 0.87 1.89 1.74 0.94 
 USD75-4-3-ALL 4 1.66 1.03 1.60 1.99 0.83 
 CAN15-12-2-2NDS 12 1.36 1.73 0.78 1.52 0.89 

T1 CAN15-12-3-2NDS 12 1.67 2.06 0.81 1.75 0.95 
 CAN15-12-1-2NDS 12 0.97 1.28 0.76 1.21 0.80 

EPIC20-8-1-ALL 8 1.25 1.28 0.97 1.26 0.98 E1 
EPIC20-8-2-ALL 8 1.71 1.74 0.98 1.60 1.07 
EPIC20-8-2-ALL 8 2.26 2.52 0.90 2.22 1.02 E2 
EPIC20-8-1-ALL 8 1.69 1.87 0.90 1.78 0.95 

E3 EPIC20-8-1-ALL 8 3.01 3.12 0.96 2.88 1.05 
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Table D-2: Continued 

Series ID Specimen # of Webs Rtest / web 
(kN) Rcalc

1 (kN) Rtest/Rcalc
1 Rcalc

2 (kN) Rtest/Rcalc
2

E4 EPIC40-6-1-ALL 6 2.36 2.26 1.04 2.44 0.97 
 EPIC40-6-2-ALL 6 2.89 3.03 0.96 3.02 0.96 
 EPIC40-6-1-ALL 6 1.62 1.54 1.05 1.81 0.89 

E5 EPIC40-6-2-ALL 6 1.92 2.08 0.92 2.27 0.85 
 EPIC40-6-3-ALL 6 2.38 2.47 0.96 2.60 0.92 

1Using coefficients from NAS (2001a); 2Using proposed coefficients 

Table D-3: Nominal Strength of Partially-Fastened Specimens 

Series ID Specimen # of Webs Rtest / web 
(kN) Rcalc

1 (kN) Rtest/Rcalc
1 Rcalc

2 (kN) Rtest/Rcalc
2

CAN30-4-1-ENDS 4 3.05 2.79 1.09 2.87 1.06 C1 
CAN30-4-2-ENDS 4 3.72 3.74 0.99 3.55 1.05 

 CAN30-4-1-ENDS 4 1.38 1.30 1.06 1.44 0.95 
C2 CAN30-4-2-ENDS 4 1.85 1.76 1.06 1.81 1.03 

 CAN30-4-3-ENDS 4 1.97 2.09 0.94 2.07 0.95 
 CAN30-4-1-ENDS 4 1.53 1.31 1.17 1.45 1.06 

C3 CAN30-4-2-ENDS 4 1.85 1.77 1.05 1.81 1.02 
 CAN30-4-3-ENDS 4 2.11 2.10 1.01 2.08 1.02 
 WHE45-4-1-ENDS 4 3.96 2.51 1.58 3.30 1.20 

W1 WHE45-4-2-ENDS 4 2.41 3.38 0.71 4.12 0.58 
 WHE45-4-3-ENDS 4 4.96 4.02 1.23 4.73 1.05 
 WHE45-4-1-ENDS 4 3.10 4.87 0.64 5.75 0.54 

W2 WHE45-4-2-ENDS 4 6.05 6.51 0.93 7.09 0.85 
 WHE45-4-3-ENDS 4 3.49 7.71 0.45 8.08 0.43 
 VIC30-4-1-ENDS 4 1.15 0.87 1.31 1.04 1.10 

V1 VIC30-4-2-ENDS 4 1.49 1.18 1.26 1.31 1.13 
 VIC30-4-3-ENDS 4 1.81 1.41 1.29 1.51 1.20 
 VIC30-4-2-ENDS 4 3.77 3.58 1.05 3.43 1.10 

V2 VIC30-4-1-ENDS 4 2.72 2.68 1.02 2.78 0.98 
 VIC30-4-3-ENDS 4 4.61 4.24 1.09 3.90 1.18 
 VIC30-8-1-ENDS 8 1.43 1.43 1.00 1.59 0.90 

V3 VIC30-8-3-ENDS 8 2.41 2.30 1.05 2.28 1.06 
 VIC30-8-2-ENDS 8 1.99 1.94 1.03 1.99 1.00 
 VIC30-8-1-ENDS 8 1.06 0.98 1.08 1.16 0.92 

V4 VIC30-8-2-ENDS 8 1.30 1.33 0.98 1.46 0.89 
 VIC30-8-3-ENDS 8 1.61 1.59 1.01 1.68 0.96 
 VIC30-8-3-ENDS 8 4.44 4.29 1.03 3.93 1.13 

V5 VIC30-8-2-ENDS 8 3.69 3.62 1.02 3.45 1.07 
 VIC30-8-1-ENDS 8 2.61 2.71 0.96 2.79 0.94 
 CMRM30-6-3-ENDS 6 1.64 1.37 1.20 1.47 1.11 

R1 CMRM30-6-2-ENDS 6 1.32 1.15 1.15 1.28 1.03 
 CMRM30-6-1-ENDS 6 1.09 0.85 1.29 1.01 1.08 
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Table D-3: Continued 

Series ID Specimen # of Webs Rtest / web 
(kN) Rcalc

1 (kN) Rtest/Rcalc
1 Rcalc

2 (kN) Rtest/Rcalc
2

 CMRM30-6-3-ENDS 6 2.55 2.19 1.17 2.22 1.15 
R2 CMRM30-6-2-ENDS 6 2.15 1.84 1.17 1.93 1.11 

 CMRM30-6-1-ENDS 6 1.68 1.36 1.23 1.54 1.09 
 CMRM30-6-3-ENDS 6 4.87 4.32 1.13 4.06 1.20 

R3 CMRM30-6-2-ENDS 6 3.98 3.64 1.09 3.56 1.12 
 CMRM30-6-1-ENDS 6 3.03 2.73 1.11 2.88 1.05 
 CAN15-12-1-ENDS 12 1.63 1.97 0.83 1.82 0.90 

CAN15-12-1-3RDS 12 1.57 1.97 0.80 1.82 0.86 
CAN15-12-2-ENDS 12 1.84 2.66 0.69 2.27 0.81 
CAN15-12-2-3RDS 12 1.99 2.66 0.75 2.27 0.87 T2 

CAN15-12-3-ENDS 12 2.47 3.16 0.78 2.61 0.95 
 CAN15-12-3-3RDS 12 2.58 3.16 0.82 2.61 0.99 
 CAN15-12-1-ENDS 12 2.55 3.00 0.85 2.72 0.94 
 CAN15-12-1-3RDS 12 2.17 3.00 0.72 2.72 0.80 

CAN15-12-2-ENDS 12 3.51 4.76 0.74 3.83 0.92 T3 CAN15-12-2-3RDS 12 3.74 4.76 0.79 3.83 0.98 
 CAN15-12-3-ENDS 12 2.98 4.02 0.74 3.36 0.89 
 CAN15-12-3-3RDS 12 3.22 4.02 0.80 3.36 0.96 
 USD60-4-3-ENDS 4 3.06 2.44 1.25 3.02 1.01 

U1 USD60-4-2-ENDS 4 3.06 2.06 1.49 3.02 1.09 
 USD60-4-1-ENDS 4 2.55 1.54 1.65 2.65 1.12 
 USD60-4-1-ENDS 4 1.71 0.90 1.91 1.49 1.15 

U2 USD60-4-2-ENDS 4 1.98 1.21 1.63 1.86 1.06 
 USD60-4-3-ENDS 4 2.10 1.44 1.45 2.14 0.98 
 USD60-4-1-ENDS 4 1.07 0.40 2.72 0.88 1.21 

U3 USD60-4-2-ENDS 4 1.19 0.54 2.22 1.12 1.06 
 USD60-4-3-ENDS 4 1.28 0.64 1.99 1.29 0.99 
 USD45-4-1-ENDS 4 1.61 1.12 1.44 1.50 1.07 

U4 USD45-4-2-ENDS 4 1.85 1.51 1.23 1.88 0.98 
 USD45-4-3-ENDS 4 1.97 1.79 1.10 2.16 0.91 
 USD45-4-1-ENDS 4 1.62 1.25 1.30 1.67 0.97 

U5 USD45-4-2-ENDS 4 2.03 1.69 1.20 2.09 0.97 
 USD45-4-3-ENDS 4 2.29 2.01 1.14 2.40 0.95 
 USD45-4-1-ENDS 4 2.74 2.00 1.37 2.39 1.15 

U6 USD45-4-2-ENDS 4 3.44 2.67 1.29 2.95 1.17 
 USD45-4-3-ENDS 4 3.82 3.16 1.21 3.36 1.13 
 USD75-4-1-ENDS 4 3.79 2.48 1.53 3.44 1.10 

U7 USD75-4-2-ENDS 4 4.59 3.29 1.40 4.22 1.09 
 USD75-4-3-ENDS 4 5.14 3.88 1.32 4.78 1.08 
 USD75-4-1-ENDS 4 3.23 1.61 2.02 2.56 1.27 

U8 USD75-4-2-ENDS 4 3.46 2.15 1.61 3.16 1.10 
 USD75-4-3-ENDS 4 3.47 2.54 1.36 3.60 0.96 
 USD75-4-1-ENDS 4 1.65 0.64 2.56 1.39 1.19 

U9 USD75-4-2-ENDS 4 1.83 0.87 2.10 1.74 1.05 
 USD75-4-3-ENDS 4 1.93 1.03 1.87 1.99 0.97 
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Table D-3: Continued 

Series ID Specimen Number
of Webs 

Rtest / web 
(kN) Rcalc

1 (kN) Rtest/Rcalc
1 Rcalc

2 (kN) Rtest/Rcalc
2

 EPIC20-8-1-ENDS 8 1.28 1.28 1.00 1.26 1.02 
E1 EPIC20-8-2-ENDS 8 1.80 1.74 1.03 1.60 1.13 

 EPIC20-8-3-ENDS 8 1.89 2.07 0.91 1.84 1.03 
 EPIC20-8-3-ENDS 8 2.40 2.99 0.80 2.55 0.94 

E2 EPIC20-8-2-ENDS 8 2.39 2.52 0.95 2.22 1.08 
 EPIC20-8-1-ENDS 8 1.69 1.87 0.90 1.78 0.95 

EPIC20-8-1-ENDS 8 3.03 3.12 0.97 2.88 1.05 E3 
EPIC20-8-2-ENDS 8 3.66 4.18 0.88 3.55 1.03 

 EPIC40-6-1-ENDS 6 2.68 2.26 1.19 2.44 1.10 
E4 EPIC40-6-3-ENDS 6 3.56 3.58 0.99 3.45 1.03 

 EPIC40-6-2-ENDS 6 3.00 3.03 0.99 3.02 0.99 
 EPIC40-6-1-ENDS 6 1.62 1.54 1.05 1.81 0.90 

E5 EPIC40-6-2-ENDS 6 2.02 2.08 0.97 2.27 0.89 
 EPIC40-6-3-ENDS 6 2.08 2.47 0.84 2.60 0.80 

1Using coefficients from NAS (2001a); 2Using proposed coefficients 

Table D-4: Nominal Strength of Unfastened Data by Yu (1981) 

Specimen Number
of Webs 

Rtest / web 
(kN) Rcalc

1 (kN) Rtest/Rcalc
1 Rcalc

2 (kN) Rtest/Rcalc
2

EOF-1A 4 0.476 0.337 1.41 0.267 1.78 
EOF-1B 4 0.481 0.336 1.43 0.267 1.80 
EOF-2A 4 0.588 0.487 1.21 0.365 1.61 
EOF-2B 4 0.578 0.472 1.22 0.356 1.62 
EOF-3A 4 1.19 0.797 1.49 0.566 2.10 
EOF-3B 4 1.20 0.808 1.49 0.573 2.09 
EOF-4A 4 1.24 1.22 1.02 0.817 1.52 
EOF-4B 4 1.22 1.22 1.00 0.815 1.50 
EOF-5A 4 0.398 0.380 1.05 0.336 1.18 
EOF-5B 4 0.408 0.398 1.02 0.349 1.17 
EOF-6A 4 0.603 0.462 1.31 0.396 1.52 
EOF-6B 4 0.606 0.458 1.32 0.396 1.53 
EOF-7A 4 1.00 0.878 1.14 0.664 1.51 
EOF-7B 4 1.00 0.849 1.18 0.645 1.55 
EOF-8A 4 1.43 1.05 1.37 0.762 1.88 
EOF-8B 4 1.41 1.15 1.23 0.823 1.71 

EOF-19A 10 0.329 0.383 0.858 0.282 1.17 
EOF-19B 10 0.303 0.382 0.793 0.280 1.08 

1Using coefficients from NAS (2001a); 2Using proposed coefficients 

Table D-5: Nominal Strength of Unfastened Data by Bhakta et al. (1992) 

Specimen Number
of Webs 

Rtest / web 
(kN) Rcalc

1 (kN) Rtest/Rcalc
1 Rcalc

2 (kN) Rtest/Rcalc
2

FD1 6 0.340 0.331 1.09 0.282 1.19 
FD2 6 0.333 0.331 1.07 0.280 1.17 

1Using coefficients from NAS (2001a); 2Using proposed coefficients 
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Table D-6: Nominal Strength of Unfastened Data by Avci and Easterling (2002) 

Specimen Number
of Webs 

Rtest / web 
(kN) Rcalc

1 (kN) Rtest/Rcalc
1 Rcalc

2 (kN) Rtest/Rcalc
2

U-P1-22-1 6 0.344 0.341 1.01 0.250 1.38 
U-P1-22-2 6 0.341 0.341 1.00 0.250 1.36 
U-P1-22-3 6 0.346 0.341 1.01 0.250 1.38 
U-P2-26-1 6 0.181 0.263 0.689 0.200 0.910 
U-P2-26-2 6 0.188 0.263 0.716 0.200 0.942 
U-P2-26-3 6 0.183 0.263 0.697 0.200 0.917 
U-P3-26-1 6 0.161 0.205 0.787 0.184 0.876 
U-P3-26-2 6 0.158 0.205 0.772 0.184 0.859 
U-P3-26-3 6 0.168 0.205 0.821 0.184 0.914 
U-P4-22-1 6 0.386 0.347 1.11 0.270 1.43 
U-P4-22-2 6 0.392 0.347 1.13 0.270 1.45 
U-P4-22-3 6 0.393 0.347 1.13 0.270 1.45 
U-P5-28-1 6 0.203 0.256 0.794 0.175 1.16 
U-P5-28-2 6 0.203 0.256 0.794 0.175 1.16 
U-P5-28-3 6 0.200 0.256 0.782 0.175 1.14 
U-C1-16-1 6 1.374 1.19 1.16 0.846 1.62 
U-C1-16-2 6 1.322 1.19 1.12 0.846 1.56 
U-C1-16-3 6 1.390 1.19 1.17 0.846 1.64 
U-C1-18-1 6 1.000 0.802 1.25 0.588 1.70 
U-C1-18-2 6 0.956 0.802 1.19 0.588 1.62 
U-C1-18-3 6 1.011 0.802 1.26 0.588 1.72 
U-C1-20-1 6 0.629 0.479 1.31 0.369 1.70 
U-C1-20-2 6 0.611 0.479 1.28 0.369 1.66 
U-C1-20-3 6 0.584 0.479 1.22 0.369 1.58 
U-C1-22-1 6 0.417 0.332 1.26 0.269 1.55 
U-C1-22-2 6 0.456 0.332 1.37 0.269 1.70 
U-C1-22-3 6 0.444 0.332 1.34 0.269 1.66 
U-C2-16-1 6 1.100 0.825 1.33 0.635 1.73 
U-C2-16-2 6 1.121 0.825 1.36 0.635 1.77 
U-C2-16-3 6 1.025 0.825 1.24 0.635 1.62 
U-C2-18-1 6 0.983 0.703 1.40 0.566 1.74 
U-C2-18-2 6 0.957 0.703 1.36 0.566 1.69 
U-C2-18-3 6 0.967 0.703 1.38 0.566 1.71 
U-C2-20-1 6 0.650 0.429 1.51 0.374 1.74 
U-C2-20-2 6 0.630 0.429 1.47 0.374 1.68 
U-C2-20-3 6 0.634 0.429 1.48 0.374 1.70 
U-C2-22-1 6 0.390 0.272 1.44 0.256 1.53 
U-C2-22-2 6 0.364 0.272 1.34 0.256 1.43 
U-C2-22-3 6 0.378 0.272 1.39 0.256 1.48 

1Using coefficients from NAS (2001a); 2Using proposed coefficients 
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Table D-7: Nominal Strength of Fastened Data by Avci and Easterling (2002) 

Specimen Number
of Webs 

Rtest / web 
(kN) Rcalc

1 (kN) Rtest/Rcalc
1 Rcalc

2 (kN) Rtest/Rcalc
2

R-P1-22-1 6 0.373 0.341 1.09 0.317 1.18 
R-P1-22-2 6 0.380 0.341 1.11 0.317 1.20 
R-P1-22-3 6 0.371 0.341 1.09 0.317 1.17 
R-P2-26-1 6 0.203 0.263 0.773 0.240 0.845 
R-P2-26-2 6 0.208 0.263 0.792 0.240 0.865 
R-P2-26-3 6 0.202 0.263 0.769 0.240 0.840 
R-P3-26-1 6 0.178 0.205 0.870 0.217 0.819 
R-P3-26-2 6 0.183 0.205 0.895 0.217 0.842 
R-P3-26-3 6 0.173 0.205 0.846 0.217 0.796 
R-P4-22-1 6 0.425 0.347 1.23 0.342 1.24 
R-P4-22-2 6 0.422 0.347 1.21 0.342 1.23 
R-P4-22-3 6 0.431 0.347 1.24 0.342 1.26 
R-P5-28-1 6 0.220 0.256 0.860 0.216 1.02 
R-P5-28-2 6 0.223 0.256 0.872 0.216 1.04 
R-P5-28-3 6 0.229 0.256 0.895 0.216 1.06 
R-C1-16-1 6 1.59 1.19 1.34 1.10 1.44 
R-C1-16-2 6 1.62 1.19 1.37 1.10 1.47 
R-C1-16-3 6 1.58 1.19 1.33 1.10 1.44 
R-C1-18-1 6 1.18 0.802 1.47 0.761 1.55 
R-C1-18-2 6 1.23 0.802 1.54 0.761 1.62 
R-C1-18-3 6 1.24 0.802 1.55 0.761 1.64 
R-C1-20-1 6 0.778 0.479 1.62 0.472 1.65 
R-C1-20-2 6 0.745 0.479 1.56 0.472 1.58 
R-C1-20-3 6 0.753 0.479 1.57 0.472 1.59 
R-C1-22-1 6 0.585 0.332 1.76 0.341 1.72 
R-C1-22-2 6 0.574 0.332 1.73 0.341 1.69 
R-C1-22-3 6 0.565 0.332 1.70 0.341 1.66 
R-C2-16-1 6 1.46 0.825 1.76 0.825 1.77 
R-C2-16-2 6 1.47 0.825 1.78 0.825 1.78 
R-C2-16-3 6 1.48 0.825 1.80 0.825 1.80 
R-C2-18-1 6 1.31 0.703 1.86 0.730 1.80 
R-C2-18-2 6 1.34 0.703 1.90 0.730 1.83 
R-C2-18-3 6 1.33 0.703 1.90 0.730 1.83 
R-C2-20-1 6 0.878 0.429 2.04 0.477 1.84 
R-C2-20-2 6 0.854 0.429 1.99 0.477 1.79 
R-C2-20-3 6 0.860 0.429 2.00 0.477 1.80 
R-C2-22-1 6 0.490 0.272 1.80 0.323 1.52 
R-C2-22-2 6 0.484 0.272 1.78 0.323 1.50 
R-C2-22-3 6 0.468 0.272 1.72 0.323 1.45 

1Using coefficients from NAS (2001a); 2Using proposed coefficients 
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Table D-8: Nominal Strength of Unfastened Data by Wu (1997) 

Specimen Number
of Webs 

Rtest / web 
(kN) Rcalc

1 (kN) Rtest/Rcalc
1 Rcalc

2 (kN) Rtest/Rcalc
2

t26h0.75R3/32*60 4 0.164 0.278 0.589 0.202 0.809 
t26h0.75R3/64*60 4 0.170 0.297 0.573 0.208 0.816 
t26h1.5R3/32*60 4 0.110 0.211 0.521 0.188 0.585 
t26h1.5R3/64*60 4 0.124 0.225 0.551 0.192 0.645 
t22h0.75R5/64*60 4 0.468 0.718 0.652 0.487 0.962 
t22h0.75R1/16*60 4 0.486 0.742 0.655 0.493 0.985 
t22h1.5R5/64*60 4 0.412 0.601 0.685 0.459 0.897 
t22h1.5R1/16*60 4 0.464 0.617 0.752 0.465 0.999 
t22h2R5/64*60 4 0.314 0.547 0.573 0.451 0.695 
t22h2R1/16*60 4 0.325 0.555 0.586 0.451 0.721 
t22h3R5/64*60 2 0.432 0.439 0.983 0.426 1.01 
t22h3R1/16*60 2 0.464 0.453 1.024 0.431 1.08 

t22h4.5R5/64*60 2 0.337 0.318 1.058 0.404 0.835 
t22h4.5R1/16*60 2 0.368 0.325 1.134 0.405 0.909 
t22h6R5/64*60 2 0.277 0.214 1.297 0.384 0.721 
t22h6R1/16*60 2 0.299 0.216 1.385 0.381 0.784 

1Using coefficients from NAS (2001a); 2Using proposed coefficients 

Table D-9: Nominal Strength of Fastened Data by Bhatka et al. (1992) 

Specimen # of Webs Rtest / web 
(kN) Rcalc

1 (kN) Rtest/Rcalc
1 Rcalc

2 (kN) Rtest/Rcalc
2

FD3-F 6 0.402 0.311 1.29 0.349 1.15 
FD4-F 6 0.415 0.311 1.33 0.350 1.19 

1Using coefficients from NAS (2001a); 2Using proposed coefficients 



  77 

 

Appendix E 
Experimentally Recorded Load 

5.9  
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Figure E-1: Load-Stroke Plot, Test Series: T1 
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Figure E-2: Load-Stroke Plot, Test Series: T2 
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Figure E-3: Load-Stroke Plot, Test Series: T3 
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Figure E-4: Load-Stroke Plot, Test Series: C2 
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Figure E-5: Load-Stroke Plot, Test Series: C3 
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Figure E-6: Load-Stroke Plot, Test Series: C1 
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Figure E-7: Load-Stroke Plot, Test Series: R1 
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Figure E-8: Load-Stroke Plot, Test Series: R2 
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Figure E-9: Load-Stroke Plot, Test Series: R3 
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Figure E-10: Load-Stroke Plot, Test Series: U4 
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Figure E-11: Load-Stroke Plot, Test Series: U5 
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Figure E-12: Load-Stroke Plot, Test Series: U6 
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Figure E-13: Load-Stroke Plot, Test Series: U3 
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Figure E-14: Load-Stroke Plot, Test Series: U2 
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Figure E-15: Load-Stroke Plot, Test Series: U1 
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Figure E-16: Load-Stroke Plot, Test Series: U9 
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Figure E-17: Load-Stroke Plot, Test Series: U8 
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Figure E-18: Load-Stroke Plot, Test Series: U7 
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Figure E-19: Load-Stroke Plot, Test Series: V1 
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Figure E-20: Load-Stroke Plot, Test Series: V2 
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Figure E-21: Load-Stroke Plot, Test Series: V4 
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Figure E-22: Load-Stroke Plot, Test Series: V3 
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Figure E-23: Load-Stroke Plot, Test Series: V5 
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Figure E-24: Load-Stroke Plot, Test Series: W1 
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Figure E-25: Load-Stroke Plot, Test Series: W2 
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Figure E-26: Load-Stroke Plot, Test Series: E1 
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Figure E-27: Load-Stroke Plot, Test Series: E2 
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Figure E-28: Load-Stroke Plot, Test Series: E3 
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Figure E-29: Load-Stroke Plot, Test Series: E4 
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Figure E-30: Load-Stroke Plot, Test Series: E5
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Appendix F 
Genetic Algorithm Used to Verify Analysis 

F.1 General 

Discussed in this appendix is the genetic algorithm used in the analysis of this study. Specific 
information is given explaining the source code, including how the DNA strings are encoded, how the 
fitness test works, and the convergence criteria. The source code for the algorithm is also given. 

F.2 DNA Strings 

The full range of possible solutions, describing all four web crippling coefficients, can be represented 
using a nineteen digit binary number. N.B. that in the interest of reducing memory requirements, 
binary values do not translate to their decimal equivalent. This section explains how the four 
coefficients are described using a nineteen-digit binary string.  

The first three digits represent the coefficient, C, with 000 indicating a value of 2, 001 indicating a 
value of 3, and so on to 111 indicating a value of 9. 

The next four digits represent the coefficient, CR, with 0000 indicating a value of 0.02, 0001 
indicating a value of 0.03, and so on to 1111 indicating a value of 0.17. 

The next six digits represent the coefficient, CN, with 000000 indicating a value of 0.10, 000001 
indicating a value of 0.11, and so on to 111111 indicating a value of 0.73. 

The last six digits represent the coefficient, Ch, with 000000 indicating a value of 0.010, 000001 
indicating a value of 0.011, and so on to 111111 indicating a value of 0.073. 

As an example, a DNA string of 1000100111001010101 is decoded as shown in Table F-1. The 
first three digits of the DNA string represent C = 6, the following four digits represent CR = 0.06, the 
next six digits represent CN = 0.67, and the final six digits represent Ch = 0.031. Contained in Table  
F-2 is a complete list of all of the possible values represented by the DNA string. This table is very 
useful for following the source code provided in Appendix F.6. 

Table F-1: Example Decoding of a DNA String. 

Coefficient Binary Value Actual Value
C 100 6 
CR 0100 0.06 
CN 111001 0.67 
Ch 010101 0.031 
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Table F-2: Encoding Key for the DNA String 

Web Crippling Coefficients  Coefficients Binary 
Value C* CR

** CN Ch  
Binary 
Value CN Ch 

000000 1 0.02 0.1 0.01  100000 0.42 0.042 
000001 2 0.03 0.11 0.011  100001 0.43 0.043 
000010 3 0.04 0.12 0.012  100010 0.44 0.044 
000011 4 0.05 0.13 0.013  100011 0.45 0.045 
000100 5 0.06 0.14 0.014  100100 0.46 0.046 
000101 6 0.07 0.15 0.015  100101 0.47 0.047 
000110 7 0.08 0.16 0.016  100110 0.48 0.048 
000111 8 0.09 0.17 0.017  100111 0.49 0.049 
001000  0.1 0.18 0.018  101000 0.50 0.050 
001001  0.11 0.19 0.019  101001 0.51 0.051 
001010  0.12 0.2 0.02  101010 0.52 0.052 
001011  0.13 0.21 0.021  101011 0.53 0.053 
001100  0.14 0.22 0.022  101100 0.54 0.054 
001101  0.15 0.23 0.023  101101 0.55 0.055 
001110  0.16 0.24 0.024  101110 0.56 0.056 
001111  0.17 0.25 0.025  101111 0.57 0.057 
010000   0.26 0.026  110000 0.58 0.058 
010001   0.27 0.027  110001 0.59 0.059 
010010   0.28 0.028  110010 0.60 0.060 
010011   0.29 0.029  110011 0.61 0.061 
010100   0.30 0.03  110100 0.62 0.062 
010101   0.31 0.031  110101 0.63 0.063 
010110   0.32 0.032  110110 0.64 0.064 
010111   0.33 0.033  110111 0.65 0.065 
011000   0.34 0.034  111000 0.66 0.066 
011001   0.35 0.035  111001 0.67 0.067 
011010   0.36 0.036  111010 0.68 0.068 
011011   0.37 0.037  111011 0.69 0.069 
011100   0.38 0.038  111100 0.70 0.070 
011101   0.39 0.039  111101 0.71 0.071 
011110   0.4 0.04  111110 0.72 0.072 
011111   0.41 0.041  111111 0.73 0.073 

*The coefficient C is encoded using only the last three digits of the binary value. 
**The coefficicent CR is encoded using only the last four digits of the binary value. 

F.3 Gene Splicing and Mutation 

In Genetic algorithm terminology, the term ‘splicing’ is used to describe the process of creating two 
new ‘child’ DNA strings from two ‘parent’ DNA strings. The term ‘mutation,’ is used to describe the 
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practice of intentionally introducing small errors in the gene splicing process. There is no definite 
method set out for either splicing or mutation. Splicing only requires that the children DNA are 
composed entirely of elements from the parent DNA, and that the children are the same size as the 
parents. Mutation has been found to help the GA to find a solution more quickly, provided that the 
amount of mutation is kept to a minimal. 

In the program created for this project, splicing was done using one splice at a random location 
along the DNA string. A random number, representing a position in the DNA string, between 1 and 
19 is selected, and all elements between the two original DNA strings beyond that position are 
swapped. For example, if the randomly chosen number is 12, and the original DNA strings were 
1111111111111111111 and 0000000000000000000 then the two new DNA strings would be 
1111111111110000000 and 0000000000001111111. 

The program created for this project uses a mutation rate of 1%. Therefore, for every 100 new 
DNA strings created, only one should have a mutation. When a mutation occurs one character in the 
DNA string, chosen at random, is changed. For the example of splicing used above, if a mutation 
occurred in the first child, it could cause the new DNA strings to become 1111011111110000000 and 
0000000000001111111. Note the mutation at the fifth character of the first DNA string. 

F.4 Fitness Test and Penalty Functions 

As with the splicing and mutation implementations discussed in the previous section, there exists no 
set method for fitness tests and penalty functions in GA’s. This is because fitness tests and penalty 
functions are unique to the optimization problem at hand. Fitness tests and penalty functions must be 
rewritten for each new application. 

For this study, it was found that only one fitness test was necessary, and penalty functions were not 
necessary. Equation F.4-1 summarizes the fitness test, which is a modification of Equation 4.2-1. 

 ( )∑
=

−−
n

i
citi PP

1

23000  Eq. F.4-1 

The value, 3 000, was selected because it is larger than the majority of possible values of the 
summation given the constraints imposed by the range of coefficient values possible within the DNA 
string. Using Microsoft Excel Solver, the optimized summation was found to be approximately 500, 
which would result in an optimized fitness value of 2500. A minimum fitness value of 100 was 
imposed on all DNA strings to ensure than some of the less fit DNA strings survive into the next 
generation. It is important to ensure that enough diversity continues into each generation to find the 
optimal solution. 
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F.5 Convergence 

Convergence on a final optimal solution was considered to have occurred when the fitness value of 
the most fit DNA string does not change by more than 1% over five iterations. A maximum of 10 000 
iterations has also been imposed. 

F.6 Source Code 

#include <stdafx.h> 
#include <iostream.h> 
#include <fstream.h> 
#include <iomanip.h> 
#include <string.h> 
#include <stdlib.h> 
#include <time.h> 
#include <math.h> 
 
//Function Headers 
void CreateDNA (char *, int); 
void MateDNA (char *, char *, float, float); 
float TestDNA (char *, float*, float*, float*, float*, float*, float*, float*, int); 
float getC (char *); 
float getCr (char *); 
float getCn (char *); 
float getCh (char *); 
 
int main(int argc, char* argv[]) 
{ 
 srand(time(NULL));  //seed the random number generator 
 
 //Variables 
 const int PopSize = 300;  //Population size 
 const int NumIter = 10000; //Maximum number of iterations before convergence 
 float CrossOver = 1;  //Probability of Gene splicing (usually 100%) 
 float MutaRate = (float) 0.01; //Probability of mutation (usuall very small) 
 const int DNASize = 20; //Size of DNA String 
 const int total = 74;   //total number of data test specimens 
 float t[total], fy[total], sinth[total], R[total], N[total], H[total], P[total];  //specimen variables 
 char choice;   //used to cycle between data files 
 char DNA[PopSize][DNASize] = {""}; //array of characters used to store DNA population 
 char DNA2[PopSize][DNASize] = {""}; //copy of DNA array used to create next generation 
 float FitValue[PopSize];  //array of fitness values from each DNA string 
 float TotalFit=0;  //total Fitness of the Population 
 float RandSelect;  //used to choose parents 
 float RandTotal;  //used to choose parents 
 int counter;   //used to choose parents 
 int Parents[PopSize];  //list of DNA strings selected for parenting next generation 
 int Converge=0;   //used to indicate convergence 
 float BestFit=0;   //used to remember the best fitness value 
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 float OldBestFit=0;  //used to remember best fit from previous generation 
 int MostFit=0;          
 //used to remember the best fit DNA 
 int Iterate=0;         
 //used to count the number of iterations 
 
 cout << "Press 1 for unfastened data, anything else for fastened data: "; 
 cin >> choice; 
 
 if (choice='1') {    //reads in unfastened data 
  ifstream finu ("unfast.txt", ios::in); 
  if (!finu) { //check file was found 
   cerr << "File could not be opened" << endl; 
  } 
  for (int a = 0; a<total;a++) { 
   finu >> t[a] >> fy[a] >> sinth[a] >> R[a] >> N[a] >> H[a] >> P[a]; 
  } 
 } 
 
 else {        //reads in fastened data 
  ifstream fin ("fast.txt", ios::in); 
  if (!fin) {  //check file was found 
   cerr << "File could not be opened" << endl; 
  } 
  for (int a = 0; a<total;a++) { 
   fin >> t[a] >> fy[a] >> sinth[a] >> R[a] >> N[a] >> H[a] >> P[a]; 
  } 
 } 
  
 //Create and define DNA sequences.  
 for (int a = 0;a<PopSize;a++) { 
  CreateDNA(DNA[a], DNASize); 
 } 
 
 //Program will loop until convergence criteria is met or a max. number of iterations occur. 
 while (Converge < 5 && Iterate < NumIter) { 
   
  TotalFit = 0;  //initialize values 
  BestFit=0; 
  Iterate++; 
 
  for (a = 0; a<PopSize; a++) {  //Find the fitness of the population 
   FitValue[a]=TestDNA(DNA[a],t, fy, sinth, R, N, H, P, total); 
   TotalFit = TotalFit+FitValue[a]; 
   if (FitValue[a]>BestFit) { 
    BestFit = FitValue[a]; 
    MostFit = a; 
   } 
  } 
 
  if(BestFit-OldBestFit>=0 && BestFit-OldBestFit<=8) //convergence criteria 
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   Converge++; 
  else 
   Converge=0; 
 
  if (BestFit>OldBestFit)  //Record best fit to compare to next generation 
   OldBestFit=BestFit; 
 
  if(Converge>=5 || Iterate >=NumIter) //If convergence is met, output results.  
   cout <<Iterate << endl << endl << "C:\tCr:\tCn:\tCh:"<< endl  

<< getC(DNA[MostFit]) << "\t" << getCr(DNA[MostFit]) << "\t" 
   <<getCn(DNA[MostFit]) << "\t" <<getCh(DNA[MostFit]) << "\t" << endl; 
  else {          
     //If convergence is not met, then create next generation 
   for (a=0;a<PopSize;a++) { 
    RandTotal=0; 
    counter=0;        
 
//Parents are selected by choosing a random number and adding the fitness values until the random 
//number is exceeded. 
    RandSelect=(float)(rand()%3000)/2999;   
    while (RandTotal<=RandSelect && counter<PopSize) {   
     RandTotal=RandTotal+FitValue[counter]/TotalFit;  
     counter++; 
    } 
    Parents[a]=counter-1;   
   } 
   for (a=0;a<PopSize;a++) 
//create an array of parent DNA by copying DNA strings from the population 
    strcpy(DNA2[a],DNA[Parents[a]]); 
   for (a=0;a<PopSize/2;a++) 
//create offspring DNA strings 
    MateDNA(DNA2[a], DNA2[a+PopSize/2],CrossOver, MutaRate); 
   for (a=0;a<PopSize;a++) 
//copy offspring DNA over the original DNA array for the next iteration. 
    strcpy(DNA[a],DNA2[a]);  
  } 
 } 
 
 return 0; 
} 
 
//This function randomly generates a binary sequence. It is passed a pointer to a  
//string array and the length to make the binary sequence. 
void CreateDNA (char *s1, int size) { 
 
 int dna; 
 
 for (int a=0;a<size-1;a++) { 
  dna = rand()%2; //Returns either 1 or 0 (chosen randomly) as an integer. 
  if (dna == 0)  //The DNA sequence is stored as a string. This if statement is 
   strcat(s1,"1"); //used to convert the randomly generated integer to a char. 
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  else 
   strcat(s1,"0"); 
 } 
 
 return; 
} 
 
//This function determines how two sequences are to be spliced together to generate two new 
//sequences to be used in the next generation. It is passed the pointers to two string arrays and two 
//doubling pt numbers. The strings represent the DNA sequece and the doubleing pt numbers are the 
//Crossover Probability (set to one in this program) and the Mutation Probability (set to 0.05). 
void MateDNA (char *s1, char *s2, float cross, float mutation) { 
 
 //Assign and create parent DNA 
 char p1[20] = ""; 
 char p2[20] = ""; 
 strcpy (p1,s1); 
 strcpy (p2,s2); 
 
 //Determine genetic splicing data 
 int Splice = rand() % strlen(s1); 
 int MutationLocation = rand() % strlen(s1); 
 
 //Splice Genes at a random location. The crossover variable is used to 
 //model the probablity of the genes splicing, in most cases = 100% 
 float Crossover =(float)  (rand() % 100); 
 if (Crossover <= cross*100) { 
  strncpy(s1,p2,Splice); 
  strncpy(s2,p1,Splice); 
 } 
 
 //Mutate Gene 
 
 //Consider that first gene may mutate. 
 float Mut = (float) (rand()%100); 
 
 if (Mut < mutation*100) { 
  if (s1[MutationLocation] == '1') //Flip the binary genetic value 
   s1[MutationLocation] = '0'; 
  else 
   s1[MutationLocation] = '1'; 
 } 
 
 //Consider that second gene may mutate. 
 Mut = (float) (rand()%100); 
 
 if (Mut <= mutation*100) { 
  if (s2[MutationLocation] == '1') //Flip the binary genetic value 
   s2[MutationLocation] = '0'; 
  else 
   s2[MutationLocation] = '1'; 
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 } 
 
 return; 
} 
 
//This procedure inputs all of the variables to determine web crippling plus the actual test load and a 
//DNA string. It will use the DNA string and other procedures to determine the theoretical web 
//crippling load. Fitness is determined by subtracting the sum of the square from 3000. Any value less 
//than 2500 is automatically changed to 100. 
float TestDNA(char *s1, float *t, float *fy, float *sintheta, float *R, float *N, float *H, float *P, int 
number) { 
 float total = 2500; 
 float C, Ch, Cr, Cn;  //determine web crippling coeffecients 
 C = getC(s1); 
 Ch = getCh(s1); 
 Cr=getCr(s1); 
 Cn=getCn(s1); 
 for (int a=0; a < number; a++) {  //determine the sum of the squares 
  total = total - (float)pow(P[a] - C*t[a]*t[a]*fy[a]*sintheta[a]*(1-    
  Cr*sqrt(R[a]))*(1+Cn*sqrt(N[a]))*(1-Ch*sqrt(H[a]))/1000,2);  
 } 
 if (total<100)   //make all small values equal to 100 
  total=100; 
 return total; 
} 
 
float getC (char *s1) {   //Decode the C value from a DNA string 
 float x=1; 
 for (int a = 0;a<3;a++) { 
  if (s1[a]=='1') 
   x = x+(float)pow(2,a); 
 } 
 return x; 
} 
 
float getCr (char *s1) {   //Decode the Cr value from a DNA string 
 float x=(float)0.02; 
 for (int a = 3;a<7;a++) { 
  if (s1[a]=='1') 
   x = x+(float)pow(2,a-3)/100; 
 } 
 return x; 
} 
 
float getCn (char *s1) {   //Decode the Cn value from a DNA string 
 float x=(float)0.10; 
 for (int a = 7;a<13;a++) { 
  if (s1[a]=='1') 
   x = x+(float)pow(2,a-7)/100; 
 } 
 return x; 
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} 
 
float getCh (char *s1) {   //Decode the Ch value from a DNA string 
 float x=(float)0.010; 
 for (int a = 13;a<19;a++) { 
  if (s1[a]=='1') 
   x = x+(float)pow(2,a-13)/1000; 
 } 
 return x; 
} 
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